

जैविक खेती पर नेटर्वक परियोजना Network Project on Organic Farming

ICAR-Indian Institute of Farming Systems Research Modipuram, Meerut-250 110 (U.P.), India

ICAR- IIFSR

ICAR-Indian Institute of Farming Systems Research (IIFSR) (formerly Project Directorate for Farming Systems Research-PDFSR), was established by Indian Council of Agricultural Research, New Delhi in April, 1989 at Modipuram, Meerut (Uttar Pradesh).

Vision

Management of natural resources for holistic improvement of small and marginal farmers through Integrated Farming Systems

Mission

Improve food, nutrition, livelihood and financial security of small and marginal households through climate smart Integrated Farming Systems (to make marginal and small households as bountiful)

Mandate

- Research in integrated farming systems on production technologies for improving productivity and resource use efficiencies.
- Develop efficient, economically viable and environmentally sustainable integrated farming system models for different farming situations.
- On-farm testing, verification and refinement of system-based farm production technologies.
- Coordinate and monitor integrated farming systems research in the country.

All India Coordinated Research project on Integrated Farming Systems (AICRP on IFS) is an integral part of ICAR-IIFSR with 75 centres to undertake on-station main (25 no's), on-station sub (12 no's), on-station voluntary (6 no's) and on-farm research (32 no's) spread across length and breadth of the country. The institute is also leading a Network Project on Organic Farming (NPOF) with 20 centres.

Annual Report 2014-15

NETWORK PROJECT ON ORGANIC FARMING ICAR-Indian Institute of Farming Systems Research Modipuram, Meerut – 250 110, India

Correct citation		Network Project on Organic Farming. Annual Report 2014-15, ICAR-Indian Institute of Farming Systems Research, Modipuram, Meerut- 250 110, pp. 1-150. © Reserved with ICAR-IIFSR, Modipuram
Compiled & Edited	:	Dr. N. Ravisankar, National PI Dr. Vipin Kumar, CTO (NPOF) Dr. M. Shamim, Scientist (CU) Dr. Debashis Dutta, Senior Scientist (OAS)
Data processing	:	Dr. N. Ravisankar, National PI Dr. Vipin Kumar, CTO (NPOF)
Hindi translation	:	Dr. Vipin Kumar, CTO (NPOF)
Hindi typing	:	Mrs Jailata Sharma, Stenographer (CU)
Published by	:	Dr. A.S. Panwar Director ICAR-Indian Institute of Farming Systems Research, Modipuram, Meerut- 250 110, India

Important Notes:

- This compilation is a joint contribution of all the scientists involved in Network Project on Organic Farming (NPOF) at 13 centres and ICAR-IIFSR, Modipuram (report writing, compilation, editing and printing).
- The Annual Report 2014-15 is based on experimental data generated during *kharif*, *rabi* and *summer* seasons of 2013-14. The other details are relevant up to 31 March 2015.
- The report includes both processed and semi-processed data, generated in different experiments under Network Project on Organic Farming (NPOF) and as such no material/ data should be reproduced in any form without prior written permission of the Director, ICAR-Indian Institute of Farming Systems Research and due credit to the concerned scientist (s).

Printed at: Yugantar Prakashan (P) Ltd., WH-23, Mayapuri, New Delhi-110064

ACKNOWLEDGEMENT

etwork Project on Organic Farming (NPOF) initiated in 2004 is operating with 13 co-operating centres in 12 states. The results of the experiments conducted during 2013-14 by all the cooperating centres are processed and compiled in the Annual Report 2014-15 of the scheme. I take this opportunity to record my sincere thanks to Dr. T. Mohapatra, Secretary, Department of Agricultural Research and Education and Director General, Indian Council of Agricultural Research, New Delhi for offering critical comments and guidance. I extend my gratitude to Dr. K. Alagusundaram, Acting Deputy Director General (Natural Resource Management) for his constant support extended to the scheme. The time to time guidance received from Dr. S. Bhaskar, Assistant Director General (Agronomy, Agroforestry and Climate Change) for improving the performance and output of the scheme is duly acknowledged. My sincere thanks also extended to Dr. S. Ayyappan, Former Secretary, Department of Agricultural Research and Education and Director General, Indian Council of Agricultural Research, New Delhi, Dr. A.K. Sikka, Former Deputy Director General (Natural Resource Management) and Dr. B. Mohankumar, Former Assistant Director General (Agronomy, Agroforestry and Climate Change) for their critical comments, reviews and suggestions on the performance and improvement of scheme over the years. Scientific inputs received from Quinquennial Review Team (QRT), Research Advisory Committee (RAC) and Institute Management Committee (IMC) are thankfully acknowledged as those inputs provided immense help in taking new initiatives, shaping and improvement of the programme for practical utility.

I am highly thankful to each and every one of the scientists and research fellows involved in the scheme at 13 centres for putting the meticulous effort to conduct the field experiments, lab analysis and generating data. The sincere efforts put forth by **Dr. N. Ravisankar**, Principal Scientist and National Principal Investigator deserves appreciation for compilation and editing of the report. I also extend my appreciation to **Dr. M. Shamim**, Scientist and **Dr. Vipin Kumar**, Chief Technical Officer for their cooperation in compilation of the data, its statistical analysis, drafting and proof correction. Thanks and appreciations are also due to **Dr. Kamta Prasad**, Former Programme Facilitator (Co-ordination Unit) and **Dr. J.P. Singh**, Former Director (Acting) for extending the cooperation in preparation of report.

The contributions of all the other scientific, technical, administrative and skilled supporting staff either directly or indirectly at various levels during preparation of this report are also acknowledged. I am sure; the significant findings obtained from the experiments especially identification of suitable production systems and varieties for various crops, resource conservation practices for organic farming, Integrated Organic Farming System (IOFS) models are of practical in nature and can be adopted by organic growers.

Attant

(A.S. Panwar) Director

CONTENTS

	I kjklwabstract	1-11
1.	INTRODUCTION	12
2.	OBJECTIVES AND METHODOLOGY	14
3.	LOCATIONS	15
4.	MANPOWER	15
5.	SOIL AND CLIMATE	16
6.	BUDGET	17
7.	RESEARCH RESULTS	18
	7.1 Evaluation of organic, inorganic and integrated production systems for crops and cropping systems	18
	7.2 Evaluation of response of different varieties of major crops for organic farming	68
	7.3 Evaluation of bio-intensive complimentary cropping system under organic production systems	106
	7.4 Development of Integrated Organic Farming System models	121
	7.5 Tribal Sub Plan (TSP)	127
8.	PUBLICATIONS, HUMAN RESOURCE DEVELOPMENT AND WORKSHOPS/MEETINGS	140
	8.1 List of publications	140
	8.2 Human Resource Development	142
	8.3 Workshops/Group Meetings	143
9.	APPENDICES	146
	I. Details of crops and varieties used in experiment at various locations	146
10.	ANNEXURES	148
	Contact address of centers	148
	ACRONYMS	150

i kjiak

tsod] jlk; fud vkj lesdr mRiknu ç.kkyh, kadk eW; kadu

- ctkjk% fgekpy insk ealefdr vkj vtfod icU/ku dh ryvuk eatfod icU/ku ds vUrxir xb"e Qnyxkbkh, oaÝpchu usØe'k%8220 vkj 4800 fd0xk0@g0 mPp mit ntldhA mMm dh vPNh mit 1070 fd0xk0@g0 75 ifr'kr tfod \$ 25 ifr'kr jlk; fud iczku ds vUrxir ik; h xbA xb"e dnnw vkj jch eVj usjkT; }kjk flQkfj'k jlk; u iczku ds rgr Øe'k%31110, oa8370 fd0xk0@g0 dh mPp mit ntldh gkykbd jchQny xkbkh] [kjhQ mMm vkj fHk.Mh dh mit eaØe'k%22] 3 vkj 10 ifr'kr dh deh 75 ifr'kr ikškd rRokadkstfod [kkn ds: i eansusij ns[kh xblA
- Haksi ky%e/; insk eatsod mRiknu izaku dsrgr ikskd rRokadks [kkn dsek/; e l s75 ifr'kr vkg 100 ifr'kr dsiz, kx }kjk l ks kchu] xggl ljlka puk vkg vylh ea Øe'k%1-8]1-2]2-5]5 vkg 1-8 ifr'kr dk mit ea vlrj ns[kk x; kA; g fu"d"k2 cgq egRoiwk2 gSD; kad; g tsod izaku dsrgr lh/ks 25 ifr'kr de [kkn dk iz kx djusij [krh dh ykxr dks de djus dh xqt kb'k nrk g&
- dkyhdV%djy eavl; icaku dsrjhdksdh ryvuk eatfod [kkn dsek/; els100 ifr'kr ikškd rRoka dh vkifir2dsl kFk vnjd dh mPp mit 23033 fd0xk0@g0 tfod icaku dsrgr nt2dh xbA gYnh dh mYy{kuh; <x mPp mit 21200 fd0xk0@g0 lefdr icaku ½0 ifr'kr tfod \$ 50 ifr'kr jlk; u½dsl kFk nt2dh xbA jlk; fud vkj, dhdr dsicU/ku dh ryvuk eadkyh fep2dh mYy{kuh; mPp mit 1800 fd0xk0@g0 tfod icaku dsrgr nt2dh xbA ftllsjlk; fud vkj lefdr icaku ij Øe'k%59 vkj 116 ifr'kr dh mit eaof} ik; h xbA
- cks EcVij%rfeyukMqea100 ifr'kr ikškd rRokadh vkifir2¼t\$od [kkn dsek/; e 1½dh rgyuk eadgy t\$od icáku [kkn dk doy 75 ifr'kr ikškd rRo t\$od [kkn }kjk nsusij | Hkh Q| ykaeade [kkn dsmi; kx | smPp mit iathdr dh FkhA dikl] eDdk] fep] | jiteq[kh vk§ pqUnj dh mit eaØe'k% 18] 12] 14] 7-4 vk§ 6 ifr'kr dh of} gksuk ik; h xbA
- /kkjok//% duk//d eajkT; fl Qkfj'k mRiknu izkkyh dsvUr&r yksc;k] dq ej vjgj] cktjk] ekkQyh] dikl vksj puk dh mPp mit Øe'k%1270] 1542] 2653] 4586] 4430] 1637 o 1551 fd0xk0@gs0 nt2 dh xbA ekk dh vf/kdre mit lesdr icaku %50 ifr'kr tsod \$ 50 ifr'kr jl k; fud½ dsl kFk nt2 dh xbA jl k; fud ikskd icaku dh rsyuk ea tsod icaku ds rgr dq ej vjgj] ekk] Tokj] ekkQyh] l cdj dikl] eDdk vksj fep2 dh mit eaØe'k%18-6] 20-8] 15-1] 12-6] 18-6 o 20-8 ifr'kr dh deh ikb2 xbA
- tcyij%e/; insk exckl erh /kku dh vf/kdre mit tsod icaku dsl kFk 100 ifr'kr ikskd rRoka dh vkifir2tsod [kkn ds: i exvkj , dhdr icaku %50 ifr'kr tsod \$ 50 ifr'kr jl k; fud% ds vUr&r nt2dh xb2tcfd xgW%2522 fd0xk0@g0% eDdk %4110 fd0xk0@g0% cjl he pkjk vkj cht %92200 o 241 fd0xk0@g0% eVj %4166 fd0xk0@g0% dh vf/kdre mit 100 ifr'kr jl k; fud

ikškd i cáku dsrgr ntldh xbA Tokj dh vf/kdre mit 75 ifr'kr tfod o 25 ifr'kr jl k; fud ikškd rRo i cáku ds vUr&r ntldh xb2 FkhA

- djtV%egkjk"Vªea/kku dh vf/kdre mit ½914 fd0xk0@g0½les/drik%kd rRoic/kku ½50 ifr'kr tsod \$ 50 ifr'kr jlk; fud½ ds rgr nt2 dh xbA eWkQyh] eDdk] ljlkavksj lks kchu dh mPp mit 100 ifr'krik%kd rRoka dh vkifr2jlk; fud icU/ku }kjk djus ds lkFk nt2 dh xbA
- yí/k; kuk% i tkc ea puk ¼1470 fd0xk0@g0½ vkj /kku ¼180 fd0xk0½ dh vf/kdre mit tíod mRiknu ç.kkyhdsrgr nt2dh xb2 tcfd vjgj ½20 fd0xk0@g0½ jkT; }kjk lefiir i idst dsrgr cgrj i kb2 xbA xgWdh mPp mit ½5800 fd0xk0@g0½ ik; cd 50 i fr'kr tíod vkj jl k; fud i kškd rRoka dh vki kr2ds l kFk leidr i idst ea nt2dh xb2 FkhA
- ekonhije%mùkj Ánskes/kku] xgjl/tkj elk eDdk ¼iki dku½eDdk ¼ehBh eDdk½dh mPp mit 75 ifr'kr tfod \$ 25 ifr'kr jl k; fud icźku ds rgr Øe'k% 4680] 4190] 4120] 885] 2270 vkj 11730 fd0xk0@g0 nt2dh xbA tfod icU/ku ds rgr vkyjl fHk.Mh] vkj ljl kadh vf/kdre mit Øe'k% 23830] 9860 o 2090 fd0xk0@g0 nt2dh xb2 FkhA
- iUruxj%mùkjk[k.M+ea/kku dh mPp mit ½519 fd0xk0@g0½lesdr iczku ½5 ifr'kr tsod \$
 25 ifr'kr jl k; fud½ dsl kFk vU; isdst dh reyuk eant2 dh xb2 Fkh tcfd xgWdh mPp mit
 510-7 fd0xk0@g0, dhdr isdst ½50 ifr'kr tsod \$ 50 ifr'kr jl k; fud½ dsrgr nt2 dh xbA
 puk] eVj] vkywts h QI yka dh vf/kdre mit Øe'k% 1202] 432] vks 8513 fd0xk0@g0 tsod
 isdst mRiknu ç.kkyh dsrgr ikb2 xbA
- jk; ij%NUhl x<+eal ks kchu] eDdk] eVj] feplvk§ 1; kt dh mPp mit Øe'k% 2088] 8633] 7067] 9967 vk§ 10400 fd0xk0@g\$ jkT; }kjk fl Qkfj'k i&dst dsrgr ntldh xblA
- jkph% >kj[k.M+eat\$od i&dst dsrgr pkoy ½570 fd0xk0@g0½ vkyw¼19007 fd0xk0@g0½ vkj vylh ½803 fd0xk0@g0½ dh mPp mit nt2dh xb2tcfd xgWdh mPp mit ½000 fd0xk0@g0½ jlk; fud i&dst dsrgr nt2dh xbA ely dh mPp mit ½560 fd0xk0@g0½, dhdr ik\$kd rRo i&dst ½50 ifr'kr t\$od \$ 50 ifr'kr jlk; fud½ dsrgr nt2dh xbA
- mfe; e ea/kku dh vf/kdre mit 4180 fd0xk0@g0, dhdr i&dst ½50 ifr'kr tsod \$ 50 ifr'kr jl k; fud½l ks= l sik5kd rRoka dh vkifir2nsusij nt2 dh xbA xktj] vkyw VekVj dh l cl s vf/kd mit Øe'k% 13220] 14370 vkg 14810 fd0xk0@g0 100 ifr'kr tsod [kkn dh vkifir2 ij tsod ik5kd rRoka ds icU/ku ds rgr nt2 dh xbA Ý0pchu dh mPp mit 8560 fd0xk0@g0 doy jl k; fud iczku ds rgr nt2 dh xbA

tsod [krh ds fy; s eq[; QI y ds fdLeka dh çfrfØ; k dk eW; kdau

 ctkjk ex fHk. Mh dh fdLe i h&8 us 13364 fd0xk0@g0 dh vf/kdre mit nt2 dhA bl ds vuq j.k ex blækfuy us 12341 fd0xk0@g0 dh mit nt2 dhA U; wre i dus dh vof/k 45&46 fnu Hkh fdLe] r1fr] blækfuy vkj ih&8 }kjk nt2dh xbA Qnyxkikh dh fdLekaih, I chd&1 vkj divh&25 }kjk Qny dk mPp otu 508-7 vkj 503-9 xke , oavf/kdre mit Øe'k%17590 vkj 16550 fd0xk0@gD Hkh nt2 dh xbA VekVj dh fdLe jkek usQykadh I {; k ½-9 çfr ik&kk ½ dsI kFk vf/kdre Qy mit ½6190 fd0xk0@gD½ nt2 dhA xb"e esVekVj dh fdLekajM xkYM vkj gkbfcM 7730 dh mPp mit Øe'k% 13930 vkj 12190 fd0xk0@gD ik; h x; h FkhA eVj dh fdLe ih-ch&89 usdh 9-7 I eh yEch Qyh ds I kFk vf/kdre mit 7950 fd0xk0@gD dh ishkokj mYy{[kuh; <x I ¢nt2 dhA

- Hkksi ky ea I ks kchu] xgj eDdk vkj puk dh fdLeka dk tšod çcl/ku ds rgr I ks kchu&xg vkj eDdk&puk QI y ç.kkyh dsvlr kr eW; kdu fd; k x; kA I ks kchu fdLekadschp vkj-oh, I 2002&04 ea Øe' k%726 vkj 1741 fd0xk0@gD dh mPp mit vkj dVkA I podkad fu"d Ækr dhA xg wdh fdLeka ds chp th MCyn&399 }kj k xg vkj Hkm k dh mPp mit Øe' k%2907 vkj 3768 fd0xk0@gD nt2g pA eDdk dh fdLe vj koyh us 2137 fd0xk0@gD mit vkj 2430 fd0xk0@gD i vky dh mPp mit mYys[kuh; <x I cnt2 dhA fdLe çks xks 4412 vkj I hi h ch th 4202 us Hkh vPNh mit dk i n' ku fd; kA pus dh fdLe ts ch 130 us cht Qyh ¼1-7 çfr i k%kk½ ds dkj.k vkj cht , oa dsy tšod Hkkj mit ¼Øe' k%5104 vkj 1979 fd0xk0@gD%mYys[kuh; <x I cnt2 dhA pus dh fdLekavkj-oh th&203] tsth&16] tsth&63 vkj vkj-oh th&202 dh mit 1733&1872 fd0xk0@gD ds chp nt2 dh xbA
- dkyhdV eagYnh ds dan dh vf/kdre mit l m 'ku ½29000 fd0xk0@g0½ }kjk nt2 dh xb2 Fkh ds vulji.k eal kkuk us½24500 fd0xk0@g0½nt2 dhA vf/kdre djD; fieu rRo 6-9 gYnh dh fdLe l kkuk eans[kk x; k ftl dsvupji.k eaçHkk ea; g 6-1 FkkA
- cks, kEcVij ea/kku dh fdLe I hvks 48 dkst\$od çcaku dsrgr vPNk gkuk ik; k x; kA /kku dh fdLea I hch 05022 usØe'k%4380 vkj 6130 fd0xk0@g\$0 dh mYys[kuh; mit , oaiq/ky mit rFkk QI y I podkad 10-50½ ntZ dhA
- /kkj okM+eal ks kchu dh fdLe Mh, I -ch 16 usmPp mit ½291 fd0xk0@g0½ k0) çfrQy ¼ 50089½ vk3 ykxr% ykHk vuqikr ½3-69½ nt2fd; k bl dsckn Mh, I -ch&21 vk3 Mh, I -ch&20 }kjk nt2dh xb2 FkhA fdLe Mh, I -ch&21 vk3 Mh, I -ch&16 dks/kkjokM+eavf/kd ykHkdkjh i k; k x; kA exQyh dh fdLe Vh th, y-ih, I &3 us I v[kh Qyh dk otu ¼45-51 xk çfr i k5kk½ I v[kh Qfy; ka dh mit ½571 fd0xk0@g0½ vk3 'k0) ykHk : 120]196 çfr g0 vk3 ykHk ykxr vuqikr 6-32 mYy{[kuh; <x I & nt2 dhA ft1 dk fdLe thih ch-Mh&4 us Oh vuq j.k fd; kA dikI dh mPp mit fdLe th, p-, e&82 vk3 34 us nt2 dhA xgweaMh-MCywvkj 162 usfdYysçfr ehVj yEckb2¼113-7 I {; k½ dy 'kqd çnkFk2¼126-65 xk çfr i k5kk½ nkusçfr ckyh ½6-6½ cht mit ¼678 fd0xk0@g0½ 'k0) ykHk : 0 18091 çfr g0 vk3 ykHk ykxr vuqikr 3-6 t5od çcU/ku ds rgr mYy{[kuh; <x I & nt2 dhA t5od çc4ku ds rgr pus dh fdLe ts, -dsvkb&9218], -vkb2 vk3 ch th Mh&103 us fdLe vkb2I h I hoh&2 ½2097 fd0xk0@g0½ dh ryvk ea Øe'k% 23] 21 vk3 22% vf/kd cht mit i 5hk dhA</p>
- tcyiğ ea/kku dh fdLe ih, I & 3 us 3410 fd0xk0@g0 dh vukt mit ds I kFk vU; fdLekadschp egRoiwkZ vUrj ntZ fd; kA xgwdh fdLe tsMCyn&3173 us 4063 fd0xk0@g0 dh mYy{[kuh; <x I s mit nhA

- djtV ex/kku dh fdLe I g; kfæ I svukt vkj Hkw sdh mPp mit Øe'k%4710 vkj 5510 fd0xk0@g0 nt2 dhA tsod mRiknu ç.kkyh ds rgr exQyh dh fdLe vkj-, p-vkj-th 6083 us ik%ks dh yEckb2 vf/kdre 47 I eh I w[kh Qyh mit 2320 fd0xk0@g0 vkj M.By 3713 fd0xk0@g0 ishkokj dhA fdLe Vh-th 26 vkj dkwd.kxkjo us Hkh bI dk vu(j.k fd; kA
- y(/k; kuk eackl erh /kku dh fdLe i l k&1612 usmYy{kuh; <x L" mPp mit 5367 fd0xk0@g0 nt2 dh vkj i l k&1592 ds kjk Hkh 52 fd0xk0@g0 dh mit vu(j.k djrsgq nt2dh xbA tcfd i l k ckl erh&1509 usl cl sde vukt dh mit 2307 fd0xk0@g0 nt2dhA xgwdh vf/kdre mit MCyw, y&0134 ea 4770 dh n{kh xb2 tcfd l cl sde vukt dh mit MCyw, y&1761 ds l kFk 2410 fd0xk0@g0 nt2dh xb2 FkhA
- eksnhije exeDdk dh fdLe ih, e-, p&3 usmYy{kuh; <x L mPp vukt mit] iv/ky dh mit]
 I dy , ox 'ky ykHk vkj fuosk çfr : i; sØe'k%6170] 8680 fd0xk0@g0] : 115977 çfr g0] : 76552 çfr g0 vkj 1-94 nt2dh FkhA I jl ksvkj-th, u&48 us1970 fd0xk0@g0 dsl kFk mPp mit nt2dh tcfd iv k I jl kv25 us1530 fd0xk0@g0 dh U; vure mit nt2dh
- iUruxj eatlod mRiknu ç.kkyh dsrgr ekWs/kku dh fdLekadh mit 5130 l s6174 fd0xk0@g0 dschp jgh rFkk irys/kku dsfdLekadh vukt mit 2510 l s4185 fd0xk0@g0 dschp nt2dh xb2 FkhA vukt dh mit xkgryc : i l s, u-Mh-vkj 359 dsl kFk 6174 fd0xk0@g0 ng[kh xb2FkhA xgwdh mPp vukt dh mit 4101 fd0xk0@g0; wih 1109 eang[kh xb2tcfd Hkw k dh mPp mit ; wih 2572 eant2 dh xbA
- jk; iğ ea/kku dh fdLe ckn'kkg Hkkx usvU; fdLekadh ryvuk ea3854 fd0xk0@g0 dh vukt dh mit tsod mRiknu ç.kkyh dsrgr nt2dh FkhA t; xqMh] fcl uh] fo".ktkkx vkj dçjhekgj usHkh 3136 l s 3703 fd0xk0@g0 dschp mit nt2dh FkhA
- jkph ex/kku dh vf/kdre mit 3722 fd0xk0@g0 fdLe yyr I sçkIr ghp2Fkh tksfcjl k fodkl /kku 203 ½567 fd0xk0@g0½ fcjl k /kku 201 ½567 fd0xk0@g0½ vkj uohu 3404 fd0xk0@g0 dks NkMedj vU; I Hkh fdLekal smYy{kuh; : i I scgrj FkhA xgwdh fdLe ds0307 us3378 fd0xk0@g0 dh mPp mit nt2dhA /kku dh QI y Øe dsvuq kj fcjl k /kku&201&xgwthMCyn&366 QI y Øe us7719 fd0xk0@g0 dh mPp QI y ç.kkyh mRiknu nt2dhA
- mfe; e eaeDdk vkj-lh, e 1&3 us6400 fd0xk0@g0 dh mPp mit gjsHk@sds: lk eant2dh tks vkj-lh, e&75 us6030 fd0xk0@g0 vkj Mh, &61, us5950 fd0xk0@g0 dsmRikndrk IsT; knk FkhA Ýbp chu eagjh Qyh dh mPp mit 4360 fd0xk0@g0] ukxk ykcdy usnt2dh Fkh ftldsvu(j.k eavkj-lh, e, Q-ch&18 ¼110 fd0xk0@g0½, oavkj-lh, e, Q-ch&19 ½930 fd0xk0@g0½ usmPp mit nt2dhA

tsod mRiknu i) fr; ka ds rgr xgu tso ekukFkZ QI y izkkfy; ka dk eWa kdu

- /kkjokM+eaQly izkkyh dsvUr&r IHkhQlykadh mit pkMh D; kjhvký dM fof/k %chch,Q% eaQly vo'kškkadslekosku dslkFk vf/kd ikbZxbA pkMh D; kjhvký dM %chch,Q% cqxkbZdh fof/kQly vo'kškkadslekosku dslkFk us fcuk vo'kšk lekosku dh rgyuk eamPp ek&ndykHk vký vf/kdykxr%ykHkvuqikr%ntZfd;kFkkA cqxkbZdh %chch,Q% fof/kQly vo'kškkadslekosku dslkFk %izkkfy;kaeavFkok vUrjQly izkkfy;kae&aemx MhOTkhOTkhOoh 2&Tokj,e035&1 dh rgyuk eaemxQyh GPBD4+dlkkl I kguk dh [krhvUrQlyhdj.ktkfd 2%ldsvuqikreafd;kx;kFkkmleavf/kd'kq) ek&ndykHk 88898 ifrgQ0 ntZdhxbA dukW/ddsmRrjhijhOrh {ks= %ks=8% eat\$od if) rdsrgr emxQyh GPBD4+dlkkl I kguk ftldh cqkbZ2%ldsvuqikreafd;kx;kFkhuMo,l0ch021\$ vjgjVh0,l03 vkj2%l,oalkskchuMh0,l0ch021&xmgmMhOMCY;w2006 QlyØe dh rgyuk ea vf/kdykHkdkjhikbZx;hFkhA
- iruxj ea/kku xgurk i) fr & xgy&<pk i) fr us mYy{kuh; <x Isvukt dh mPp mit 3336 fd0xk0@g0 vkg Hkuk 7740 fd0xk0@g0 nt2 fd;k; | fi /kku xgurk i) fr & xgy&<pk i) fr ckl erh /kku&xgy&<pk Mh0, I 0vkj&lks kchu&eVj&ljlkaQI y Øe dslert/; nt2dh xba xgywdh vf/kdre mit 3450 fd0xk0@g0 Mh0, I 0vkj&xgyW&<pk dslkFk cklerh /kku & xgyw&<pk us 3061 fd0xk0@g0 nt2 dh Fkh A eVj dh gjh Qyh dh mPp mit 5109 fd0xk0@g0 Mh0, I 0vkj & eVj & yksc;k us ch0ch0, Q ij Mh0, I 0vkj \$ I ks kchu & eVj & ljlka 3343 fd0xk0@g0 mPphdr D; kjh dh fof/k ½j3M cM/k dh rgvuk eamPp mit iklr dh FkhA Mh0, I 0vkj & ew Ql y Øe eapus dh mit ch0ch0, Q0 ea1405 fd0xk0@g0 nt2 dh xb2FkhA ljlkadh mPpre mit 636 fd0xk0@g0 Mh0, I 0vkj \$ I jlkaQl y de ea½j3M cM/k fof/k eaikb2xb2FkhA xgWdh mYy{kuh; lert/; mit 5876 fd0xk0@g0 vU; I kr lj{k.k fof/k;kadsvi{kk ch0ch0, Q fof/k ij ikb2xb2FkhA
- mfe; e ea mPphdr D; kjh fof/k lsfd; sx; slfCt; ka dh [krh ea vf/kdre mRiknu vkyw 16820 fd0xk0@g0dsckn xktj 14260 fd0xk0@g0, oa Ýpchu dh Qyh 10060 fd0xk0@g0 lsikIr gh/2 Qpchu dsckn [kjhQ ea mPphdRk D; kjh fof/k ea fd; sx; sfHk. Mh dh [krh lsvk3 r mit 3770 fd0xk0@g0 dslkFk 8300 ls9060 fd0xk0@g0 rd dh mit nt2dhA /kku dh fdLeka ea lslkgk lkjx 1 4290 fd0xk0@g0 dsckn ykEiukg 4060 fd0xk0@g0 ea ns[kk x; k jch ea vylh dh [krh ls 1160 ls1340 fd0xk0@g0 rd dh mit nt2dh xbA

lefdr tfod -f"k ç.kkyh %IOFS% e,My dk fodkl

- , d , dM+eagYnh vk/kkfjr lesdr tsod —f"k ç.kkyh e,My ftleagYnh X0-2 gDX; dsyk X0-01 gDX; vukukl X0-02 gDX; lCth yksc; k X0-01 gDX vks pkjk?kkl ; kfu co3, co4 lcdj usi; j] dkxkstuy X0-14 gDX vks Ms jh Xnks xk;] 0-02 gDX; dks dkyhdV X/dsjyX; eaLFkkfir fd; k tk jgk gA; g e,My LFkkiuk ds pj.k eagA
- , d , dM+lefdr tfod —f"k ç.kkyh e,My ftlea 10-12 g0½ ea Qly ç.kkyh fHk.Mh\$/kfu; k iÙkh&eDdk+pkjk\$ykfc; k 10-12 g0½ gjh [kkn&dikl&Tokj 10-12 g0½ vkj pkjk?kkl cocn4 MJ ebFkl

Y0-1 g0Y\$ — f"kokfudh ¼<pk] Fk1 fifl ; k ikfifyfu; k] Y; k hfe; k Y; kdk1 Qyk 0-03 g0Y\$ +M\$; jh Ynks xk; , d cNMk 0-01 g0Y\$ oehdEikkV Y0-01 g0Y\$ + I hekorhZ i M+Y/M1 ek/Fk1] dsyk] XykbEj I hfM; k/\$ + I eFkU {ks=Qy ¼[kkn x<<k] [kfygku Q'k]Z 0-01 g0½ dks dks; EcVij YrfeyukMikz ex LFkkfir fd; k tk jgk gA IOFS e,My 1-80 ykHk ykxr vuij kr ds I kFk 'ki) ykHk : 0 74]316 çfr , dM+mRilu dj I drk gA 'ki) ykHk dsfy; sQI y ç.kkyh vkj i 'kijkyu dk Øe'k%87 , ox11 çfr'kr ; kxnku ik; k x; k gA; g ç.kkyh , d , dM+IOFS e,My dsfy; svko'; d 84% t6od fuosk mRilu dj I drk gA

, d 0-43 g0 okyk lesodr tsod —f"k ç.kkyh e,My ftleavukt ½pkoy] eDdk½ nky@frygu ½ ks kchu]eVj½ lfCt; k; ½Ý0pchu] VekVj] xktj] fHk.Mh] csku] cUnxkkkh] vkyh cksdyh] Onyxkkkh] fep]
 /kfu; k½ Qy ½vle uhch i i hrk½ i 'kaku ½ d xk;], d cNMk½ Ms jh] eRL; vk§ pkjk 'kkfey g§ dsfy; s
 mfe; e e\$kky; eaLFkkfir fd; k tk jgk g& bl {ks= eabl e,My ls'ko) vk; : 58]331 çfr o"k2
 nt2dh xb2Fkh tksekstmk ç.kkyh dh ryvuk ea6 xuµk vf/kd g&; g e,My 90% rd vko'; d chtjki.k
 l kexh vk§ i kskd rRo mRilu dj ldrk g&

tutkrh; mi;kstuk

- 25 vkfnokl h ifjokjka dkseukj ounskk fdl ku leng ds: i ea xBu djdsla në jftLVkj dk; kly; rfeyukMaj dks, EcVnj ea tSod çek.khdj.k dsfy; siath—r fd; k x; k FkkA
- çR; cd i kp I nL; h; Vhe dks N\u00fckhl x<+ds dkadig ftyk ea oehidEi kk_V vkg , tksyk mRi knu ds fy; s LFkkfir fd; k x; k] ftUganksçf'k{k.k Hkh fn; s x; k
- leng -f"Vdksk Islendr -f"k ç.kkyh dsek/; e Istiod [kk | kUukadk mRiknu eikky; dsfjHkkbZ tuin dsfeul u xkp eard; k x; kA
- day 120 f"k ifjokjkadks xkpka ea fofHkUu mik; kadsfy; s'kkfey fd; k x; kA pkj rkykckadk fodkl] 16 ty dqM] 8 I keqnkf; d dppyk [kkn bdkb21/8 Vad] 2 x 1-5 x 0-75 eh/4 I h<\u00e4nkj [ks 1/6 ifjokj1/4 mPp, a Much glp2 D; kjh 1/41 ifjokj1/2 day {ks=Qy 1-05 gl0] Qy i M+o{kkjki .k 1/200 ve: n1/4 cgrj I vjj i kyu 1/7 bdkb2, kl/4 QI y fdLeka1/413 fdLe1/2 dk fodkl >qM ds: i ea t\$od [kk | kUu mRiknu dsfy; s fd; k x; kA bl dsfy; s, d ç{ks= fnol eukus ds I kFk& I kFk 20 çf'k{k.k Hkh fn; s x; kA

ABSTRACT

Network project on Organic Farming (NPOF) started in 2004-05 with 13 cooperating centres covering 12 states. The salient research achievements are presented below.

1. Evaluation of organic, inorganic and integrated production systems

- Summer cauliflower (8220 kg/ha) and french bean (4800 kg/ha) recorded higher yield under organic compared to integrated or inorganic production system. Performance of black gram was found to be better with 75% organic+25% inorganic management (1070 kg/ha). Summer squash and *rabi* pea registered higher yield with state recommendation (31110 kg/ha and 8370 kg/ha respectively) having combination of 100% inorganic source of nutrients and integrated package of pest and disease management. However, in case of *rabi* cauliflower, *kharif* blackgram and okra, yield reduction of 22, 3 and 10% was observed with 75% nutrients through organic manure and innovative package at Bajaura (Himachal Pradesh).
- The yield difference observed between 75 and 100% nutrients application through organic manures under organic production system was only 4.8, 1.2, 2.5, 5 and 1.8 % in soybean, durum wheat, mustard, chickpea and linseed respectively at **Bhopal (Madhya Pradesh)**. These findings are very important as it gives scope to reduce the 25% organic manure application thus directly reducing the cost of cultivation under organic management.
- Ginger recorded significantly higher yield (23033 kg/ha) under organic production system with 100% nutrients through organic manures compared to other system practices. Turmeric recorded significantly higher yield (21200 kg/ha) with integrated system consisting of 50% organic +50% inorganic. Black pepper recorded significantly higher yield (1800 kg/ha) under organic system than inorganic and integrated packages. The yield increase was found to be 59 and 116% over inorganic and integrated package at Calicut (Kerala).
- All the crops registered higher yield under reduced application of manures (75% nutrients only through organic manures with total organic management) compared to 100% nutrients supply through organic manures. The yield increase was found to be 18, 12, 14, 7.4 and 6% for cotton, maize, chillies, sunflower and beetroot respectively at **Coimbatore (Tamil Nadu)**.
- Cowpea, safflower, pigeon pea, sorghum, groundnut, cotton and chickpea recorded higher yield (1270, 1542, 2653, 4586, 4430, 1637&1551 kg/ha respectively) under production system having state recommendation. Green gram recorded highest yield (1322 kg/ha) under integrated production system with 50% organic + 50% inorganic. The yield reduction under organic management in safflower, pigeonpea, green gram, sorghum, groundnut, hybrid cotton, maize and chilli were found to be 18.6, 20.8, 15.1, 12.6, 18.6 & 20.8 % respectively over inorganic production system at Dharwad (Karnataka).
- Basmati rice recorded higher yield under organic package with 100% organic nutrient supply and integrated package with 50% organic and 50% inorganic nutrient source, whereas wheat (3522 kg/ha), maize (4110 kg/ha), berseem (fodder and seed) (241 & 92200 kg/ha), pea (4166 kg/ha) recorded higher yield under inorganic production system with 100% inorganic management. Sorghum recorded higher yield under integrated system with 75% organic and 25% inorganic nutrient sources at Jabalpur (Madhya Pradesh).
- Rice recorded higher yield (3914 kg/ha) in integrated production system with 50% organic and 50% inorganic nutrient supply. Groundnut, maize, mustard and dolichos bean, recorded higher yield with inorganic system at Karjat (Maharasthra).

- Chick pea (1470 kg/ha) and rice (4180 kg/ha) recorded higher yield under organic production system, while pigeon pea (620 kg/ha) was found to be better under state recommendation package. Wheat recorded higher yield (5800 kg/ha) under integrated production system with 50% each organic and inorganic nutrient supply at Ludhiana (Punjab).
- Rice, wheat, barley, greengram, maize (popcorn) and maize (sweet corn) recorded higher yield (4680, 4190, 4120, 885, 2270, 11730 kg/ha respectively) under integrated production system with 75% organic + 25% inorganic nutrient sources. Potato, okra and mustard recorded higher yield (23830, 9860 & 2090 kg/ha respectively) under organic management at Modipuram (Uttar Pradesh).
- Basmati rice recorded higher yield (3519 kg/ha) under integrated production system with 75% organic+25% inorganic nutrient sources compared to other packages while wheat recorded higher yield (5107 kg/ha) under integrated package having 50% organic + 50% inorganic. Crops like chickpea, vegetable pea, potato recorded higher yield of 1202, 4321, & 8513 kg/ha respectively under organic production system at Pantnagar (Uttrakhand).
- Soybean, maize, pea, chili and onion recorded higher yield of 2088, 8633, 7067, 9967 and 10400 kg/ha respectively with state recommendation having inorganic + organic management at Raipur (Chhatisgrah).
- Higher yield of basmati rice (3570 kg/ha), potato (19007 kg/ha) and linseed (803 kg/ha) recorded under organic package while wheat recorded highest yield (3000 kg/ha) under inorganic system. Lentil recorded higher yield (560 kg/ha) under integrated production system having 50% each of organic and inorganic at Ranchi (Jharkhand).
- Rice resulted in higher yield (4180 kg/ha) with integrated production system having 50% each of organic and inorganic. Carrot, potato and tomato recorded highest yield 13220, 14370 and 14810 kg/ha under organic system with 100% nutrients supplied through organic manures. Only French bean recorded highest yield (8560kg/ha) under inorganic system at Umiam (Meghalaya).

2. Evaluation of response of different varieties of major crops for Organic Farming

- Variety P-8 of okra recorded highest fruit yield (13364 kg/ha) followed by Indranil (12341 kg/ha). Days taken to harvest were also recorded to be minimum (45-46 days) in Tripti, Indranil and and P-8. In cauliflower PSBK-1 and KT-25 recorded higher curd weight 508.7 and 503.9 gm and resulted in higher yield of 17590 and 16550 kg/ha respectively. Tomato variety Roma recorded the highest fruit yield (6190 kg/ha) with higher no of fruits/plant (7.90). In summer the fruit yield of tomato variety red gold and hybrid-7730 were found to be higher (13930 and 12190 kg/ha). Pea variety 'Pb-89' gave significantly higher pod yield (7950 kg/ha) and significantly longer pods (9.7 cm) at Bajaura (Himachal Pradesh).
- Varieties of soybean, wheat, maize and chickpea were evaluated in soybean-wheat and maize-chickpea cropping system under organic management. Among the soybean varieties, RVS-2002-4 resulted in higher seed and straw yield (726 and 1741 kg/ha) and harvest index. Among the wheat varieties, GW-399 recorded maximum seed yield and biomass (2907 and 3768 kg/ha). Maize variety Arawali recorded significantly higher yield (2137 kg/ha) and straw yield (2430 kg/ha). Proagro 4412 and CPBG 4202 also exhibited good yield. Chickpea variety JG-130 resulted in significantly higher seed yield of 1979 kg/ha owing to higher seeds/pod (1.7) and total biomass (5104 kg/ha). RVG-203, JG-16, JG-63 and RVG-202 of chickpea also recorded yield ranging from 1733-1870 kg/ha at Bhopal (Madhya Pradesh).

- Maximum rhizome yield of turmeric was recorded by Sudarshana (29000 kg/ha) followed by Suguna (24500 kg/ha). Maximum curcumin content (6.9%) was noticed in the variety Suguna followed by Prabha (6.1%) at Calicut (Kerala).
- Significantly higher grain, straw yield and harvest index was recorded with CB05022 (4380, 6130 kg/ha and 0.50 respectively). Variety of rice CO 48 was also found to be better under organic management at Coimbatore (Tamil Nadu).
- Soybean genotypes DSB 16 recorded higher seed yield (2291 kg/ha) net return (Rs.50,089/ha) and B:C ratio (3.69) followed by DSB 21 and DSB 20. Cultivar DSB 21 and DSB 16 in organic production system were found more remunerative at Dharwad (Karnataka). Significantly higher dry pod weight of groundnut (45.51g/plant), dry pod yield (3571 kg/ha), net return (Rs. 1,20,196/ha) and B:C ratio (6.32) was recorded with TGLPS 3 followed by GPBD 4. Cotton cultivars GHAM 82 and GHAM 34 produced higher seed cotton yield. In wheat, DWR 162 recorded significantly higher tillers/m row length (113.71), total dry matter (126.65 g/plant), nos. of grains/spike (36.56), grain yield (1678 kg/ha), net return (Rs. 18091/ha) and B:C ratio of 3.06 under organic production system. Chickpea varieties, JAKI 9218, A1 and BGD 103 produced 23, 21and 22 % higher seed yield, respectively over cultivar ICCV 2 (2097 kg/ha) under organic production system.
- PS3 (3410 kg/ha) variety of rice recorded significant difference grain yield. In Wheat, JW-3173 variety gave the significantly higher yield (4063 kg/ha) at Jabalpur (Madhaya Pradesh).
- Higher grain and straw yield of rice was recorded with sahyadri-5 (4710 and 5510 kg/ha). In groundnut RHRG-6083 produced maximum and significantly higher plant height (47cm), dry pod yield (2320 kg/ha) and haulm weight (3713 kg/ha) followed by TG-26 and Konkan gaurav under organic production system at Karjat (Maharashtra).
- Basmati rice variety Pusa 1612 recorded significantly higher grain yield of 5367 kg/ha closely followed by Pusa-1592 (5247 kg/ha) while, Pusa Punjab Basmati-1509 recorded lowest grain yield (2307 kg/ha). The highest grain yield of wheat was observed in BWL -0134 (4770 kg/ha) while lowest grain yield was recorded with BWL-1761 (2410 kg/ha)at Ludhiana (Punjab).
- Maize grain, straw yield, gross return, net return and net return per rupee invested (6170, 8680 kg/ ha, Rs.115977/ha, Rs.76552/ha and1.94 respectively) was recorded significantly higher with PMH-3 Higher grain yield of mustard was recorded with RGN-48 (1970 kg/ha) while variety Pusa Mustard-25 gave minimum yield of 1530 kg/ha at Modipuram (Uttar Pradesh).
- Grain yield of coarse grain rice varieties ranged from 5133 to 6174 kg/ha and fine grain rice varieties ranged from 2510 to 4185 kg/ha respectively under organic production system. Significantly higher grain yield were observed in NDR-359 (6174 kg/ha). Higher grain yield of wheat were observed in UP-1109 (4101 kg/ha) while higher straw yield of wheat was recorded in UP-2572 at Pantnagar (Uttarakhand).
- Rice variety Badshahbhog recorded the higher grain yield (3854 kg/ha) compared with other varietiesunder organic production system. Jaygundi, Bisni, Vishnubhog and Kubrimohar also recorded yield ranging from 3636 to 3730 kg/ha at Raipur (Chhatisgarh).
- The maximum grain yield of rice (3722 kg/ha) was obtained with rice variety Lalat which was significantly superior over all the other rice varieties except Birsa Vikas Dhan 203 (3622 kg/ha), Birsadhan-201 (3567 kg/ha) and Naveen (3404 kg/ha). The wheat variety K0307 recorded the higher wheat yield (3378 kg/ha) In terms of system yield of rice with, Birsadhan201- wheat with GW-366 gave significantly higher system yield (7119 kg/ha) at Ranchi (Jharkhand).

In maize, green cob yield was highest in RCM 1-3 (6400 kg/ha) followed by RCM 75 (6030 kg/ha) and DA 61-A (5950 kg/ha) In Frenchbean, highest green pod yield was recorded in Naga local (4360 kg/ha) followed by RCM-FB-18 (4110 kg/ha) and RCM-FB-19 (3930 kg/ha) at Umiam (Meghalaya).

3. Evaluation of bio-intensive complimentary cropping systems under organic production systems

- Yield of all crops in cropping systems were found to be higher under broad bed and furrow (BBF) with incorporation of crop residue. BBF method of planting with crop residues produced higher net monetary returns and higher B:C ratio as compared to BBF without crop residues. BBF method of planting with crop residues was found beneficial for different cropping systems (either in sequence or intercropping systems) over conventional flat bed (FB) method of planting with crop residues. Groundnut (GPBD 4) + Cotton (Sahana) (2:1) intercropping system produced highest net monetary returns (Rs. 88,898/ha) compared to Greengram (DGGV 2)-Sorghum (cv. M 35-1) (Rs.74,230/ha), Soybean (DSB 21) + Pigeonpea (TS 3R) (2:1) intercropping (Rs. 50.042/ha) and Soybean (cv. DSB 21)-Wheat (cv. DWR 2006) system (Rs. 48,254/ha). In Northern Transitional Zone (Zone 8) of Karnataka, Groundnut (GPBD 4) + Cotton (Sahana) (2:1) intercropping system was found more beneficial and more remunerative cropping system under organic production system compared to Soybean (DSB 21) + Pigeonpea (TS 3R) (2:1) intercropping and Soybean (DSB 21) + Pigeonpea (TS 3R) (2:1) intercropping system was found more beneficial and more remunerative cropping system under organic production system compared to Soybean (DSB 21) + Pigeonpea (TS 3R) (2:1) intercropping and Soybean (DSB 21)-Wheat (DWR 2006) sequence cropping systems at Dharwad (Karnataka).
- System Rice Intensification (SRI)-wheat-sesbania system recorded significantly higher grain yield (3336 kg/ha) and straw yield (7740 kg/ha), though, grain yield under SRI-Wheat-Sesbania system was at par with basmati rice-wheat-sesbania and Direct Seeded Rice (DSR)+ soybean -vegetable pea mustard. Maximum grain yield of wheat (3450 kg/ha) was observed in DSR-wheat (zero tillage)-sesbania followed by 3061 kg/ha in basmati rice-wheat-sesbania. Green pod yield of vegetable pea was found highest (5109 kg/ha) in DSR-vegetable pea -cowpea on broad-bed and furrow system compared to 3343 kg/ha in DSR+soyabean -vegetable pea+mustard on furrow in raised-bed system. Chickpea yield under DSR-chickpea-moong on broad-bed and furrow system was 1405kg/ha. Mustard yield was found highest (636 kg/ha) in DSR+soyabean -vegetable pea+mustard on furrow in raised-bed system significantly higher wheat equivalent yield (5876 kg/ha) was observed in DSR-chickpea-moong on broad-bed and furrow system over all other resource conservation practices at Pantnagar (Uttrakhand).
- The highest vegetable yield was harvested in potato (16820 kg/ha) followed by carrot (14240 kg/ha) and french bean (10060 kg/ha) on raised beds. The yield of okra during *kharif* was found higher with french bean as preceding crop and ranged from 8300 to 9060 kg/ha under different cropping sequences on raised beds. The rice productivity in sunken beds ranged from 3520 to 4290 kg/ha under various sequences with mean productivity of 3770 kg/ha. Among the rice varieties, Shahsarang-1 recorded the highest yield (4290 kg/ha) followed by Lampnah (4060 kg/ha). During *rabi* season, lentil yield ranged from 1160 to 1340 kg/ha at Umiam (Meghalaya).

4. Development of Integrated Organic Farming System (IOFS) models

- One acre turmeric based IOFS model comprising of turmeric (0.2 ha), banana (0.01 ha), pineapple (0.02 ha), vegetable cowpea (0.01 ha) and fodder grasses *viz*. CO3, CO4 hybrid napier, congosignal (0.14 ha), and dairy (2 cows, 0.02 ha) is being established at Calicut (Kerala). The model is in establishment stage.
- One acre IOFS model comprising of cropping systems [okra+leafcoriander-maize+cowpea (fodder) in 0.12 ha, green manure –cotton- sorghum in 0.12 ha, and fodder grasses COCN4 and desmanthus in 0.10 ha)+agroforestry (Sesbania grandiflora, Thespesia populnea, Leucaena leucocephala in

0.03 ha)+ dairy (2 cows, one calf in 0.01 ha+vermicompost in 0.01 ha +boundry planttaions (desmanthus, banana, *glyricidia*)+ supporting area (manure pit, threshing floor) in 0.01 ha has been established at **Coimbatore (Tamil Nadu)**. The IOFS model couldgenerate net return of Rs. 74,316/acre with B:C ratio of 1.80. The contribution of cropping system and livestock to net return was found to be 87 and 11% respectively. The system also generates 84% of the organic inputs required for one acre IOFS.

A 0.43 ha IOFS model comprising of cereals (rice, maize) pulses/oilseeds (soybean, lentil, pea), vegetables (frenchbean, tomato, carrot, okra brinjal cabbage, potato broccoli, cauliflower chilli, coriander), fruits (Assam lemon, papaya), livestock (dairy 1 cow 1 calf), fishery and fodder has been established at Umiam (Meghalaya). Net income of Rs. 58,321/year was recorded from the model which is 6 times higher than existing system (mono cropping of rice Rs. 8616) in the region. The model could also generate 90% of the seeds /planting materials, nutrients, required within the system.

5. Tribal Sub Plan

- Manarvanadesa farmer group was formed for organic certification from the 25 trained tribal families and registered at Joint Registrar Office at Coimbatore (Tamil Nadu).
- Five members each of vermicompost and azolla production units were established in Kanker district of **Chhatisgarh**. Two trainings were also imparted.
- "Organic food production through integrated farming system" was undertaken in Mynsain village of Ri-bhoi district of Meghalaya using cluster approach. A total of 120 farm house holds in the village were covered for various interventions. Development of ponds (4 Nos.) Jalkunds (16 Nos.) community vermicomposting (8 tanks of 2m x 1.5 m x 0.75 m each), terracing (6 households), raised and sunken beds (11 families, total area 1.05ha), fruit tree plantations (200 nos. of guava), improved pig rearing (7 units), improved varieties of crops (13 crops), trainings (20 nos.) and field day (1 nos.) were undertaken to develop the cluster into organic food production unit. ITK's practiced by the villagers were also documented.

1. INTRODUCTION

Organic farming systems are very much native to Indian Agriculture. As of now also, in more than 85% of the farm-households, crop + livestock farming system is prevailing. Nevertheless, during pregreen revolution period (up to 1960s) the rate of national agricultural growth was not able to keep pace with population growth and virtually 'ship to mouth' situation prevailed. This was the major factor for introduction and large-scale popularization of the high yielding varieties (HYVs) of crops, which were highly responsive to the chemical fertilizers and water use. As a result, the total food grain production increased phenomenally – from mere 50.82 million tonnes in 1950-51 to 252 million tonnes in 2014-15 – indicating a 5-times increase. This increase can be primarily attributed to large-scale adoption of HYVs, combined with other green revolution technologies (GRTs) in cereal crops, expansion of gross irrigated area (22.56 million ha in 1950-51 to 25.54 million tonnes in 2012-13). All of them put together have led to substantial increase in the productivity of crops, especially food grains (from 522 kg/ha in 1950-51 to 2125 kg/ha in 2012-13) culminating into the change in the status of India from a food importer to net food exporter in many commodities.

However, total factor productivity growth score prepared by National Institute of Agricultural Economics and Policy Research has revealed that technology-driven growth has been highest in Punjab and lowest in Himachal Pradesh. It implies that some of the states like Himachal Pradesh, Uttarakhand, Madhya Pradesh, Rajasthan, Jharkhand and north-eastern region of India have not been influenced much by the modern inputs of agriculture like chemical fertilizers and pesticides. India's average fertilizer and pesticide consumption stands at 128.3 kg/ha and 0.31 kg a.i./ha, respectively. Moreover, despite all technological advancements, the nutrient use efficiency is on lower side (33% for N, 15% for P and 20% for K and micronutrients). On the other hand, it has been proved scientifically and convincingly that integrated use of organic manures with chemical fertilizers improves the use efficiencies of the latter owing to concurrent improvement of soil physical, chemical and biological properties. The water holding capacity of the soil also gets improved on account of regular use of organic manures. It is estimated that various organic resources having the total nutrient potential of 32.41 million tonnes will be available for use in 2025. Out of these organic resources, considerable tapable potential of nutrients (N + P₂O₅ + K₂O) from human excreta, livestock dung and crop residues have been worked out to be only 7.75 million tonnes.

Organic is more of a description of the agricultural methods used on a farm, rather than food itself and those methods combine tradition, innovation and science. Organic agriculture, in simple terms, requires a shift from intensive use of synthetic chemical fertilizers, insecticides, fungicides, herbicides, PGRs, genetically engineered plants to extensive use of animal manures, beneficial soil microbes, bio-pesticides, bio-agents and indigenous technological knowledge, based on scientific principles of agricultural systems.India has a sizable cropped area in different states, which is more prone to weather vagaries; especially those located in rainfed, dryland and hilly areas. Increasing the agricultural productivity and income of the farmers as well as sustaining soil resource in these agricultural systems has always been a challenging task for researchers and policy planners. Presently, in these areas use of fertilizers and pesticides is minimal and much below the national average. At first instance, these are the areas which need to be targeted for organic production by devising proper strategies and identifying niche crops (crops which yield higher under organic production systems and have adequate market demand). The domestic and export markets must be exploited for increasing the income of the farmers, as it is important to note that 78% of Indian organic consumers prefer Indian brand of organic and many other countries also require diversified organic foods of tropical fruits, vegetables, essential oils, flowers, herbs, spices and organic cotton from India. In addition, large-scale adoption of organic agriculture in such areas will not only help in conserving the environmentally fragile ecosystems but also help in supplementing overall food production of the country. This can be clearly brought out by the example of Sikkim – an agriculturally

weak state located in north-eastern hills region of the country. During 2002-03 (before Sikkim Organic Mission) fertilizer consumption was the highest (21.5 kg/ha), the productivity of rice was 1.43 t/ha but 11 years later, i.e., during 2013-14, it increased to 1.81 t/ha, and more interestingly, no yield reduction was observed during conversion period. Productivity increase in other crops was also noted to the tune of 11%, 17% and 24% in maize, finger millet and buckwheat, respectively.

Area under organic farming, production and export (2014-15)

In world, 78 million ha area in 170 countries is under organic agriculture which includes both cultivated and wild harvest. Emerging from 42,000 ha under certified organic farming in 2003-04, the organic agriculture has grown many folds and by 2014-15, India has brought 4.89 m ha area under organic certification process. Out of this cultivated area accounts for 1.18 m ha (24.1 %) while remaining 3.71 m ha (75.9 %) is wild forest harvest collection area. Currently, India ranks 10th among the top ten countries having the cultivable land under organic certification. In terms of wild collection, India ranks 3rd next to Finland and Zambia. Around 6.50 lakhs producers are engaged in the country in various forms. Sikkim state has been declared as organic state from January 2016 and has highest net sown area (100 %) under organic certification while Madhya Pradesh is having largest area (2,32,887 ha) under organic production system. The domestic market for organic products in the year 2014-15 was estimated at Rs. 875 crores. India being a country with different agro-climatic zones, each state produces its own specialty products. Export volume and value from the country during last 3 years indicates highest volume of export to USA and in terms of Value to European Union during 2013-14 and over the years it has grown drastically. Among the various commodities exported, soybean shares 70 %. India's first internationally certified organic products emerged in the mid 70's, supported by UK's Soil Association. Different parts of India have developed their own local or regional systems for ecological agriculture that are now gathered in one umbrella term 'Jaivic Krishi' or 'Jaivik Kheti'.

In order to develop a package of practices for organic farming in a system mode, a Network Project on Organic Farming (NPOF) was initiated during 2004-05 by Indian Council of Agricultural Research (ICAR), New Delhi with ICAR-Indian Institute of Farming Systems Research (IIFSR) as lead centre. During the year, four on-station experiments and one farmer participatory experiment was undertaken at various locations. The objectives along with significant findings of all the experiments are presented in the subsequent sections.

2. OBJECTIVES AND METHODOLOGY

Sheme Objectives

- To study productivity, profitability, sustainability, quality and input-use-efficiencies of different crops and cropping systems under organic farming in different agro-ecological regions
- To develop efficient crop and soil management options for organic farming
- To develop need-based cost-effective new techniques for farm-waste recycling

Methodology

The experiments in the project have been designed mainly to evaluate the relative performance of location-specific, important cropping systems under organic and conventional (chemical) farming, and assess agronomic efficiency of different production systems. Cropping systems, which are under evaluation, involve cereal crops (mainly basmati rice, coarse rice, *durum* and *aestivum* wheats, sorghum, barley and maize), pulsesand oilseeds (blackgram, cowpea, pigeonpea, chickpea, lentil, linseed, green gram, soybean, mustard, sunflower, safflower and groundnut), spices (black pepper, ginger, turmeric, chillies, onion, and garlic), vegetables (potato, okra, baby corn, cowpea, pea, tomato, frenchbean, summer squash, beetroot, carrot, dolichos bean, coriander and cauliflower), cotton and fodder crops (sorghum, maize, cow pea and berseem) in location-specific cropping systems. During 2013-14, following five experiments were undertaken at different centers:

- Evaluation of organic, inorganic and integrated production systems for crops and cropping systems
- Evaluation of response of different varieties of major crops for organic farming
- Evaluation of bio-intensive complimentary cropping systems under organic production systems
- Development of Integrated Organic Farming System models
- Tribal Sub Plan (TSP) activities in farmers field

The objectives, locations and treatment details of each experiment at various locations are presented in chapter 7 and at respective tables. General guidelines and standards for the production of organic production, as suggested under National Standards for Organic Production (NSOP), forms the basis for raising the experimental crops in the project. A compact block of land has been earmarked at each of the cooperating centres for experimental purposes, as far as possible. The plot identified was in general, free from hazards of erosion, sediments, chemical pollutants and contaminants. Shelterbelts have been developed by planting multi-purpose trees/shrubs etc. such as Subabul, Sesbania spp. etc. around the field. The individual centre has been advised to select organic sources of nutrients depending upon the local availability and also in suitable combination(s) to fulfill the entire requirement of nitrogen and 80-90% requirement of phosphorus and potassium for each cropping system. Cooperating centers have also been advised that each centre should select only those crops for organic farming research in which effective organic (non-chemical) measures are available for plant protection to avoid failure of crops at later stages. Bulky manures were prepared within the premises of cooperating centres under the project itself or under any other project going on at university/institute/ centre in order to ensure proper quality of inputs. Inputs related to plant protection, bio-fertilizers etc are procured from reliable sources only. Adequate care has also been taken by the centres that seeds purchased from outside are not treated with any chemical seed dresser.

3. LOCATION

Multi-location experiments were conducted during 2013-14 at 13 research centers of SAUs/ ICAR Institutes in 12 states. Statewisedetails of centres are given below in the order of results presented in the chapter 7.

SI. No.	Location of centre	State	Address of SAU/ICAR institute
1.	Bajaura	Himachal Pradesh	CSK HPKVV Hill Agri. Res. &Extn. Centre, Bajaura- 175 125
2.	Bhopal	Madhya Pradesh	ICAR-Indian Institute of Soil Science, NabiBagh, Berasia Road, Bhopal – 462 038
3.	Calicut	Kerala	ICAR-Indian Institute of Spices Research, P.B. No. 1701, Marikunnu PO, Calicut – 673 012
4.	Coimbatore	Tamil Nadu	Tamil Nadu Agricultural University, Coimbatore – 641 003
5.	Dharwad	Karnataka	University of Agricultural Sciences, Yettinagudda Campus, Krishinagar, Dharwad-580 005
6.	Jabalpur	Madhya Pradesh	Jawaharlal Nehru KrishiViswaVidyalaya, Jabalpur-482 004
7.	Karjat	Maharashtra	Dr. Balasaheb Sawant Konkan Krishi Vidypeeth, RARS, Karjat, Dist. Raigad – 410 201
8.	Ludhiana	Punjab	Punjab Agricultural University, Ludhiana-141 004
9.	Modipuram	Uttar Pradesh	ICAR-Indian Institute of Farming Systems Research, Modipuram, Meerut -250 110
10.	Pantnagar	Uttarakhand	G.B. Pant University of Agriculture Sciences and Technology, Pantnagar, Udham Singh Nagar – 263 145
11.	Raipur	Chhattisgarh	Indira Gandhi KrishiVishwavidyalaya, Raipur-492 012
12.	Ranchi	Jharkand	Birsa Agricultural University, Kanke, Ranchi – 834 006
13.	Umiam	Meghalaya	ICAR Research Complex for NEH Region, Umiam – 737 102

4. MANPOWER

No regular posts, in any category, have been provided and the responsibility was assigned to a scientist, nominated as Principal Investigator of NPOF, by the parent institute/ university (Names and contact addresses of PIs are given in Annexure-I). The scientists of related disciplines were also involved in the research programme by the respective institution. In addition, two senior research fellows (as contractual staff) have been provided at each centre.

5. SOIL AND CLIMATE

Soil type, weather parameters and initial values of soil physico- chemical properties at various locations are presented below.

Soil type, weather, latitude and longitude o	of the	various centre	es
--	--------	----------------	----

S.	Name of	Soil Type		Wea	ther		Latitude	Longi-
No.	centre		Rainfall (mm)	Temp ture		R.H (%)	(N)	tude (E)
				Max.	Min.			
1.	Bajura	Silty loam	883	26.2	11.1	68	31.8°	77°.0'
2.	Bhopal	Vertisols, Clayey Montmorill- onite/smectite type	1080	32.0	22.0	71	23°18'	77°24'
3.	Calicut	Clay loam, ustic Humitropept	4121	31.8	22.0	68	11°34'	75°48'
4.	Coimbatore	Udic, Rhodustalfs, fine loamy red and sandy soil	789	29.8	21.3	86	11°	77°.0'
5.	Dharwad	Verticinceptisoles	540	31.1	17.9	63	15°26'	75°07'
6.	Jabalpur	Vertisoils, Chromusterts	1389	29.7	21.7	67	23°90'	79°90'
7.	Karjat	Haplustultsudic-fluvents, red soil	3295	34 .0	21.0	69	18°33'	77°03'
8.	Ludhiana	Ustochrepts-Usticpramments association, alluvial, sandy & sandy loam	466	30.0	17.4	65	30°56'	75°52'
9.	Modipuram	Alluvium soils Typicustochrep	t 511	29.9	16.3	71	29°4'	77°46'
10.	Pantnagar	Hapludolls, very deep alluvium coarse loomy soils	2119	29.4	17.0	71	29°08'	79°05'
11.	Raipur	Ochraquals association, deep black soil	1361	32.9	20.4	56	21°16'	81°36'
12.	Ranchi	Ultic Palesustalfs, very deep soils	1020	29.6	15.6	72	23°17'	85°19'
13.	Umiam	Clay loam	3085	20.6	4.6	75	25°41'	91°54'

"The ultimate goal of farming is not the growing of crops, but the cultivation and perfection of human beings."

-Masanobu Fukuoka, The One-Straw Revolution

S.No.	Centre	OC %	N (kg/ha)	P (kg/ha)	K (kg/ha)	S (ppm)	Fe (ppm)	Zn (ppm)
Experin	ment 1							
1.	Bajaura	0.45	146	43.3	121	22.4	30.0	1.20
2.	Bhopal	0.53	154	12.7	530	4.9	5.5	0.74
3.	Calicut	2.40	220	24.6	264	-	72	3.80
4.	Coimbatore	0.60	269	17.9	690	-	66.0	10.0
5.	Dharwad	0.41	250	23.0	330	20.0	7.5	0.80
6.	Jabalpur	0.70	264	12.6	282	9.8	2.37	0.32
7.	Karjat	1.10	234	30.0	350	-	-	1.72
8.	Ludhiana	0.34	278	36.3	134	-	-	-
9.	Modipuram	0.59	-	-	-	-	-	-
10.	Pantnagar	0.65	238	16.7	156	65.0	30.24	0.84
11.	Raipur	0.64	237	13.0	274	-	-	-
12.	Ranchi	0.44	320	48.0	270	-	59.8	1.22
13.	Umiam	1.32	186	10.4	165	-	-	-

Initial nutrient status of soil (2003-04)

6. BUDGET

A total budget of ₹ 110 lakh was released to 13 centres during 2013-14. The centre wise allocation of funds are given below.

(₹ in lakhs)

SI. No.	Name of Centre	T. A.	Cont. Service	Other Cont.	TSP general	Total
1.	HAREC, Bajaura	0.20	4.75	5.83	0.00	10.78
2.	ICAR-IISS, Bhopal	0.30	4.90	3.32	0.00	8.52
3.	ICAR-IISR, Calicut	0.20	4.95	2.80	0.00	7.95
4.	TNAU, Coimbatore	0.20	3.40	3.50	1.00	8.10
5.	UAS, Dharwad	0.30	3.65	1.45	7.65	13.05
6.	JNKVV, Jabalpur	0.20	5.45	3.20	1.00	9.85
7.	ARS, Karjat	0.10	1.40	0.70	1.00	3.20
8.	PAU, Ludhiana	0.20	3.00	2.32	0.00	5.52
9.	ICAR-IIFSR, Modipuram	0.20	6.00	2.43	0.00	8.63
10.	GBPUA&T, Pantnagar	0.30	6.25	3.50	0.00	10.05
11.	IGKV, Raipur	0.10	1.20	0.70	1.00	3.00
12.	BAU, Ranchi	0.10	2.40	1.20	1.00	4.70
13.	ICAR-RC-NEH, Umiam	0.30	6.00	3.00	7.35	16.65
	Total	2.70	53.35	33.95	20.00	110.00

7. RESEARCH RESULTS

7.1 Evaluation of organic, inorganic and integrated production systems for crops and cropping systems

Title of the experiment: Evaluation of organic, inorganic and integrated production systems for crops and cropping systems and its influence on crop productivity and soil health

Objectives:

- To study the impact of organic, inorganic and integrated management packages on crop productivity and soil health.
- To study the impact of various packages on soil microbial population and economics.

Year of start: The experiment was originally planned during 2004-05. However, the year of start varied with the centres depending upon the establishment of infrastructure for conducting the experiments. All the centres started the experiment during 2004-05 except in Modipuram and Umiamwhere it was started during 2005-06. The cropping system adopted remained almost same for all the years in each centres except Ludhiana where the cropping system was changed during 2008-09 in one set of experiment as Ludhiana centre evaluated two set of cropping systems.

Treatments: The long term experiment was conducted in split plot design as un-replicated trial with year as application. However, Raipur, Calicut, Karjat, Ludhiana, Bhopal, Pantnagar and Umiam centres have conducted the experiment with three replications. The experiment was modified during 2013-14 by dividing the organic, inorganic and integrated plots into two plots for all the cropping systems. The details of the treatments of modified experiment is given below.

Main Plot	Organic management <i>(Organic)</i>	1.	Supply of 100% nutrients through organic sources and complete organic management
		2.	Supply of only 75% nutrients through organic sources+innovative inputs (any two of cow urine @10%, Panchagavya, PGPR and vermiwash @10%) and complete organic management
	Inorganic management	3.	100% inorganic nutrients and management
	(Chemical)	4.	Either state recommendation or farmers package (Choice to centres)
	Integrated management (Towards organic)	5.	50% organic +50% inorganic source of nutrients and management
		6.	75% organic +25% inorganic source of nutrients and management
Sub Plots	Cropping Systems		Location specific cropping system 1 Location specific cropping system 2 Location specific cropping system 3 Location specific cropping system 4

The cropping system was assigned to the sub plots. The number of cropping systems ranged from 3 (Coimbatore) to as high as 5 (Dharwad) in various centres. The details of cropping systems are given in Table 7.1.1 along with experimental results. Nutrient package for the organic and integrated management packages were formulated based on recommended nitrogen dose of each system.

Locations: The experiment was conducted at the 13 locations.

The details of inputs used for organic nutrient management and their nutrient content at various locations are given below.

Centre	Nutrient Sources	NPK cor	ntents on dry weight ba	isis (%)
		N (%)	P (%)	K (%)
Bajaura	Vermicompost	0.90	0.50	0.75
	FYM	1.15	0.50	1.00
	Urea	46.00	-	-
	SSP	-	16.00	-
	MOP	-	-	60.00
	Rock phosphate	-	34.0	-
Bhopal	Vermicompost	1.14	0.72	0.68
	Neem cake	4.17	0.92	1.04
	Sesbania rostrata	2.90	0.7	1.54
Calicut	Farm Yard Manure	0.69	0.38	0.54
	Neem cake	1.62	0.34	1.41
	Ash	-	0.23	6.6
	Vermi-compost	0.89	0.28	0.65
	Green leaf manure	2.22	0.13	0.85
	Rajphos	-	18.5	-
	Urea	46	-	-
	MOP			58
Coimbatore	Vermicompost	1.14	0.72	0.68
	Neem cake	4.17	0.92	1.04
	Sesbania rostrata	2.90	0.7	1.54
Dharwad	Enriched compost	0.70	0.40	0.80
	Vermicompost	1.00	0.86	0.98
	Gliricidia	0.50	0.32	1.15
	FYM	0.50	0.35	0.50
	Urea	46	-	-
	SSP	-	16	-
	MOP	-	-	60
Jabalpur	GM (Sunhemp)	0.66	0.13	0.50
	FYM	0.54	0.20	0.26
	VC	1.8	0.75	1.00
	Neem oil Cake	5.2	1.10	1.50
	Non-edible oil Cake (NEOC)	5.20	1.10	1.50
	Urea	46.0	-	-
	SSP	-	16.0	-
	MOP	-	-	60.0
Karjat	F.Y.M.	0.50	0.25	0.50
	Neem cake	5.20	1.00	1.40
	Vermi-compost	1.50	1.00	1.50
	Glyricidia green leaves	2.74	0.50	1.15
	Paddy straw	0.61	0.16	1.14
Ludhiana	Urea	46.0	-	-
	DAP	18.0	46.0	-
	MOP	-	-	60.0
Modipuram	FYM	0.51	0.30	0.65
	VC	1.28	0.47	1.39
	Sesbania	2.25	0.41	3.01
	Urea	46.0	-	-
	DAP	18.0	46.0	-
	MOP	-	-	60.0

Source of nutrient inputs and their NPK content at various locations

Network Project on Organic Farming

Centre	Nutrient Sources	NPK cor	ntents on dry weight ba	sis (%)
		N (%)	P (%)	K (%)
Raipur	Enriched compost	0.40	0.30	0.60
	Cow dung manure	0.60	0.30	0.70
	N.E.O.C. – Non edible oil cake	3.0	0.70	1.70
	Rock phosphate		23	
Ranchi	FYM	0.5	0.3	0.5
	VC	1.2	0.45	1.4
	KC	4.0	1.0	1.0
	Urea	46.0	-	-
	SSP	-	16.0	-
	MOP	-	-	60.0
Umiam	F.Y.M.	0.72	0.29	0.61
	Vermicompost	1.50	0.62	1.00
	Rock phosphate	-	18.00	-
	Tephrosia spp	3.31	0.44	1.46

Results

The parameter wise result of 2013-14 for each centre are presented and discussed.

Influence of organic management package with reduced dose of organic manures, integrated and inorganic management packages on economic yield, straw yield and system equivalent yield (Table 7.1.1 to 7.1.3)

Bajaura: Vegetable based cropping systems were evaluated. Among the crops evaluated in cropping systems, summer cauliflower (8220 kg/ha) and french bean (4800 kg/ha) recorded higher or on par yield under organic management than integrated or inorganic packages. Crops such as tomato in *Kharif* and *rabi*, cauliflower in *rabi* and okra in *kharif* registered better yield with integrated package consisting of 50% each of organic and inorganic. Response of black gram was found to be better with 75% organic +25% inorganic management approach (1070 kg/ha). Summer squash and rabi pea registered higher yield with state recommendation (31110 kg/ha and 8370 kg/ha) having combination of 100% inorganic source of

Summer squash under integrated crop management practice at Bajaura

Blackgram under integrated crop management at Bajaura

Locations/Treatments	S	Organic	Organic management	ment			Ino	Inorganic management	anagem	ent			Integrated management	d manaç	gement	
		100% organic	7. 2 inr	75% organic + 2 innovative inputs	nic + inputs		100% in organic	<u>c 9</u>	State re farm	tte recommendatic farmer's package	State recommendation/ farmer's package	50	50% organic + 50% inorganic		75% organic + 25% inorganic	inic + ganic
	Kharif	Rabi Summer	1	Kharif Rabi	Summer	Kharif	Rabi S	Rabi Summer	Kharif	Rabi	Summer	Kharif	Kharif Rabi Summer Kharif Rabi	ner Khar	if Rabi	Summer
Bajaura																
Tomato-cauliflower - french hean	15200	15200 14510 4220		15710 14330	4800	13160	8400	1270	15200 10500	10500	4180	19800 16640	16640 3310		16810 15080	4870
Tomato-cauliflower Black gram-cauli-	840	13950 8220 16000 14840	810	14970 16300	6400 15200	500	7550 12050	3310 27020	540	9500 12500	5670 31110	630	15200 7660 18400 22780		14580 1070 17820	6800 25220
flower- summer squash Lady finger-pea	sh 13330 6880	6880	1191	11910 7550		5850	4270		6500	8370		14310 7990	7990	1327	13270 7330	
Bhopal																
Soybean-durum	511	2722	475	2689		423	2344		430	2422		451	2511	473	2656	
wriear Soybean- mustard	533	1003	487	978		362	882		391	896		399	907	481	947	
Soybean- chickpea	456	1478	489			389	1163		412	1278		425	1319	490		
Soybean- linseed	511	1393	459	1367		383	1244		403	1267		391	1315	461	1333	
Calicut																
Ginger (Varada) Ginger (Reiatha)	25100 24500	25100 20500 24500 13700				19800 14300						15400 12600				
_		23800				19500						13000				
	00201	00/01				00001						22000				
Prathibha) per-fellow	15300 17000 1800	17000				21700 1130						19800 830				
Coimbatore																
Cotton - maize Chilliae - sunflower	1165 6215	5481 1373	1375 7108	5 6021 8 1475		1334 6087	5831 1405		1663 7214	6220		1190 6522	5991 1484	1602 8265	2 6425 1642	
	24800		26300	0 4643		26200	4234		28200	4925			4426	28900		
Dharwad																
Cowpea-safflower	1229	1412	1059	9 1392		1008	1300		1270	1542		1159	1533	1108	3 1442	
Pigeonpea (Sole)	2484		2393			2197			2653					2441		
Greengram-sorghum Groundourt ± by/brid	1266	4418 1506	1222	2 4290 5 1528		1095 3033	3987 1380		1321	4586 1637		1322 1736	4476 1572	1212	2 4313	
cotton (2:1)	1001	000				0000				201		001	101	ŕ J F		
Maize-chickpea		2550		2393			2197			2653			2551		2474	

Locations/Treatments	ts	Ō	Organic management	nageme	ent			Inol	Inorganic management	anagem	ent			Integ.	rated m	Integrated management	ent	
		100% organic		75% 2 innov	75% organic + 2 innovative inputs	:+ puts		100% in organic	<u>د</u> ۵	State re farm	ate recommendatic farmer's package	State recommendation/ farmer's package	50 50	50% organic + 50% inorganic	iic + anic	75% 25%	75% organic + 25% inorganic	c + nic
	Kharif	Rabi Sı	Summer	Kharif	Rabi S	Summer	Kharif	Rabi S	Summer	Kharif	Rabi S	Summer	Kharif	Rabi Su	Summer	Kharif R	Rabi Sı	Summer
Jabalpur																		
Basmati rice-durum	3498	3330		3222	3071		3782	3522		3393	3006		3509	3383		3363 3	3174	
Basmati rice-chick-	4022		37600	3328		35300	3822		41100	3632		34800	3498	ო	38900	3222		37100
Basmati rice-ber- seem (fodder and seed)	3871	223	87500	3385	210	84500	3591	241	92200	3455	206	74800	4022	213 8	88000	3328 2	208 8	88000
Basmati rice-vege- table pea- sorghum (fodder)	3791	3923 4	42300	3264	3733	39800	3567	4166	46100	3387	3529	35000	3871	3841 4	40200	3385 3(3611 2	46900
Karjat																		
Rice-groundnut Rice-maize (Sweet corn for cob)	3418 3129	1876 14166		3354 1732 3155 14012	1732 14012		3674 3338	2264 14755		3620 3241	2044 14074		3914 3234 1	2153 14327		3319 2(3211 14	2083 14248	
Rice-mustard Rice-dolichos bean (for green pod vegetable)	3137 3324	715 4974		3186 3228 a	686 4874		3249 3876	877 5575		3165 3262	692 5246		3220 3559	797 5358		3194 7 3514 5:	744 5315	
Ludhiana																		
Basmatti rice- chicknea	3960	1470		4180 1270	1270		4060	800		4090	720		4180	1350		4110 13	1340	
Basmati rice-wheat Moong-wheat	3980	3740 4890		4060	3460 4510		4240	5730 5770		4030	5480 5650		4030	5380 5800		4100 5; 5(5300 5610	
Pegionpea -wheat	450	4830		470	4630		590	5780		620	5570		410	5870		420 56	5620	
Modipuram																		
Basmati rice- wheat (durum) - Sesbania green manure	4420	3860		4270	4140		3220	2820		3620	3380		4520	3950		4680 47	4190	
Rice-barley (malt)	4030	3640	795	3890	3780	814	2970	2710	645	3480	3140	770	4070	3970	864	4210 47	4120	885
Maize (pop corn) – potato– okra + Sesbania green manure	1960	23830	9860	2030 22420	22420	9540	1530	17020	7450	1720	19530	8230	2120 20350		8890	2270 21340		9240

Locations/Ireatments	ņ						-		ann fann	
		100% organic	75% organic + 2 innovative inputs	anic + /e inputs		100% in organic	State re farm	State recommendation/ farmer's package	50% organic + 50% inorganic	75% organic + 25% inorganic
	Kharif	Rabi Summer	Kharif Rabi	Summer	Kharif	Rabi Summer	Kharif	Rabi Summer	Kharif Rabi Summer Kharif Rabi	er Kharif Rabi Summer
Maize (sweet com) – mustard - Sesbania green manure	10370 1870	1870	10820 2090	0	8520	1430	8860	2040	11370 1680	11730 1810
Pantnagar										
Rice-wheat -	3489	4714	3517 4642	7	2741	4858	2601	4949	3448 5107	3519 5057
Sesuaria Rice-chickpea +		1202	1140	0		988		870	1046	1142
Rice-vegetable pea+		4321	4242	N		3642		3542	3821	4046
Rice-potato-sesbania		8513	8032	2		2597		3961	7006	7195
Raipur										
Soybean-maize Soybean-pea	1735 1807	8233 6600	1511 7667 1566 6133	3 7	1765 1760	8467 6733	1887 1935	8633 7067	1767 7883 1745 6567	1707 8000 1764 6400
Soybean-chilli Soybean-onion	1763 1654	9433 9933	1607 8933 1774 9267	3	1787 1772	9533 10167	2088 1977	9967 10400	1736 9400 1770 9733	1839 9166 1692 9468
Ranchi										
Rice (Basmati rice) -	3427	2720	3356 2680	0	2642	3000	2392	2500	3106 2900	2963 2880
Writeat (N 9107) Rice (Basmati rice) - Dototo (Kritri Acholoc)	3463	19007	3213 18850	20	2678	14662	2356	13173	3177 17357	2927 16729
Rice (Basmati rice) -	3570	803	3356 793	-	2785	571	2570	518	3177 778	3070 768
Linseed (Shewiar) Rice (Basmati rice) -Lentil (PL 406)	3320	420	3106 400		2606	440	2249	390	2927 560	2892 480
Umiam										
Raised bed systems										
Rice-carrot		13220	2370 9540	0		12750			4180 10850	
Rice-potato		14370		00		13860				
Rice-trench bean Rice-tomato	3250 3830 3240	8110 14810	2970 7180 3330 11180 2860	0 9	3580 3420 3426	8560 14260			4070 6370 4090 11460 4123	
	2		1000		200				04-1	

Locations/Treatments Organic management Inorganic management		Organic management	Inagen	lent			Inorga	Inorganic management	ageme	nt			Integ	Integrated management	lanagen	lent	
		100% organic	75% 2 innc	75% organic + 2 innovative inputs	c + puts		100% in organic	N.	tate rec farme	ate recommendatio farmer's package	State recommendation/ farmer's package	50	50% organic + 50% inorganic	nic + anic	75% 25%	75% organic + 25% inorganic	ic +
	Kharif	Rabi Summer	Kharif Rabi	I	Summer	Kharif	Rabi Summer		Kharif	Rabi S	Summer	Kharif	Kharif Rabi Summer Kharif Rabi	ummer	Kharif I		Summer
Bajaura																	
Tomato-cauliflower	2310	4890 3560	3560	5070	3200	2670	5560 23	2310 3	3200 8	5910	4220	2270	6800	3870	4310 5	5780	3780
Tomato-cauliflower Black gram-cauli-	1910 L	5330 5560	1820	5870 5640		1780	5570 6530	(N	2130 5	6310 5560		2270	6130 5730		6 2310 5	6670 5870	
Lady finger-pea	608	6200	579	5890		738	6170		702 (6000		721	6540		684 6	6700	
		2005	0101					Ţ		000						000	
soybean-durum wheat	1329	3885	1302	3089		1333	1105	-	1398	3823		1135	3000		1139 2	2989	
	1504	3386 2242	1369	3055			2840 2466	τ <u></u>		2941 2475		1045	2408 4066			2460 4006	
Soybean- linseed	1400	2215 2215	1374	2066		1370	2052		1429	2475 2100			1903 1903		1143 1	1930 1930	
Coimbatore																	
Cotton - maize Chillies - sunflower Beetroot - maize	5319	5319 3715 4737	5829	5829 4194 5274		5598	5598 4042 4815	ų)	5957 4	5957 4335 5692		5788	5788 4095 5031		6172 4 5	6172 4512 5862	
Dharwad (DMP g/plant)	~																
Cowpea-safflower Pideon pea (Sole)	31.8 221.3	42.3	30.3 220.9	42.8		28.1 214.8	41.5		33.4 245.6	40.5		32.8 242.5	43.8		29.3 ² 210.4	42.9	
Ш	0.3	179.3	0.3				158.7			181.4			179.3			172.3	
Groundnut + hybrid cotton (2:1)	46.2	197.4	44.4	194.3		36.0	185.8		46.8 1	198.9		d.14	195.3		40.4	193.9	
Maize-chickpea		24.6		24.2			23.1			26.4			24.5			24.7	
Jabalpur																	
Basmati rice– durum wheat-green manure	5449	5071	5046	5639		6028	6148	V	4892	5377		5541	5311		5263 5	5224	
rice- - maize fodde	5251 r	428	4933	415		5561	461	V	4787	435		5147	456		4936	421	
berseem (fodder and seed)	4967		4826			5322		V	4684			5087			4831		

Table 7.1.2. Influence of organic, inorganic and integrated packages on straw yield (kg ha^{-t}) of crops at various locations

Locations/Treatments	ts	Organic management	anagement			Inorganic management	anagemen	t	Int	t <mark>egrated n</mark>	Integrated management	
		100% organic	75% organic + 2 innovative inputs	nic + inputs		100% in organic	State reco farmer':	State recommendation/ farmer's package	- 50% organic + 50% inorganic	ganic + rganic	75% or 25% in	75% organic + 25% inorganic
	Kharif	Rabi Summer	Kharif Rabi	Summer	Kharif	Rabi Summer	Kharif R	Rabi Summer	Kharif Rabi Summer Kharif Rabi	Summer	Kharif Rat	i Summer
Basmati rice-vege- table pea- sorghum (fodder)	5239		4623		5322		4798		5147		4822	
Karjat												
Rice-groundnut Rice-maize(Sweet	4032 3691	2756 18128	3959 2544 3723 17931		4620 (3939 1	3329 18893	3918 30 3822 18(3000 18013	4336 3165 3816 18350		4272 3061 3791 18238	- œ
Rice-mustard 3: Rice-dolichos bean 3: (for green pod vegetable)	3702 3921 ole)	960 1765	3758 918 3809 1728		3834 4571	1177 1977	3735 9. 3850 18	928 1860	3799 1066 4199 1900		3770 999 4146 1884	
Ludhiana												
Basmatti rice-	6730	4500	6350 4840		6160	1870	6600 17	1750	6260 5560		6420 4970	0
Basmati rice-wheat	6200	4580	6890 4340		6030	6660	6510 66	6650	6340 6160 6460		6850 6000	
rviourig-wrieat Pegionpea -wheat	10910	5850 5850	24.30 10240 5580		10250	046U 6880	10360 67	6730	04400 10410 6420		9410 6470	
Modipuram												
Basmati rice– wheat (durum) - Sesbania green	0069	6410	6920 6330		5510	5300	5830 57	5780	7280 6240		7210 6410	
Rice-barley (malt)	6290	6040 2580	6300 6160	2700	4990	4770 2420	5600 50	5060 2780	6550 6670	3040	6570 6720	0 3170
– green gram Maize (pop com) – potato– okra + Sesbania green	3250		3490		2720		2940		3630		3770	
Maize (sweet com) – mustard-sesbania green manure	14100 7340	7340	15360 7850		12520	5870	12490 75	7560	16030 6690		15960 6770	
Pantnagar												
Rice-wheat- <i>sesbania</i> Rice-chickpea + coriander- <i>sesbania</i> Rice-vegetable pea+ Coriander- <i>sesbania</i> Rice-potato- <i>sesbania</i>		6762 2016	5182 2880			5144 1280	11	6160 1142	6779 2322		7460 3824	0.4

Locations/Treatments	ts	Organic management	anagemer	nt		Inorganic management	inageme	ant	Inte	Integrated management	gement
		100% organic	75% c 2 innova	75% organic + 2 innovative inputs		100% in organic	State ree farme	State recommendation/ farmer's package	50% organic + 50% inorganic	nic + anic	75% organic + 25% inorganic
	Kharif	Kharif Rabi Summer	Kharif F	Kharif Rabi Summer	Kharif	Rabi Summer	Kharif	Rabi Summer	Kharif Rabi Summer Kharif Rabi	ummer Kha	rif Rabi Summer
Mean	5766		5978		5941		5816		6117	6023	3
Raipur											
Soybean-maize	3294		3163		3580		3689		3073	3133	с С
Soybean-pea	3162		2797		3334		3610		3326	3350	0
Soybean-chilli	3136		3156		3450		3571		3350	3227	7
Soybean-onion	3316		3173		3099		3522		3633	3150	0
Mean	3227		3072		3366		3598		3346	3215	5
Ranchi											
Rice(Birsamati) - Wheat (K 9107)	5523 3808	3808	5416 3752	752	4637	4200	4284	3500	5069 4060	4916	6 4032
Rice(Birsamati) -	5416 2854	2854	5094 2830	830	4630	2202	4309	1978	5059 2606	4844	4 2512
Rice (Birsamati) -	5783	1499	5555 1428	428	4773	1071	4463	1071	5316 1214	5169	9 1196
Rice (Birsamati) -	5237	1155	4952 1100	100	4166	1210	3881	1073	4702 1540	463	4630 1320
LENIII (ML 400)											

26 Annual Report 2014-15

Location	Cropping Systems/	Organi	Organic management	Inorg	Inorganic management	Integrated management	anagement	Mean
	Management practice	100% organic	75% organic + 2 innovative inputs	100% inorganic	State recommendation + farmer's package	50% organic+ 50% inorganic	75% organic+ 25% inorganic	
Bajaura	Tomato-cauliflower-french bean Cauliflower-tomato Black gram-cauliflower-summer squash Lady's finger-pea Mean	30130 20115 32170 16878 24823	30913 19770 32560 16483 24931	34800 20945 41065 18723 28883	32558 19680 43155 17283 28169	19540 10033 35315 8658 18386	26080 13753 39073 13245 23038	29003 17383 37223 15211
Bhopal	Soybean-durum wheat Soybean-maize Soybean- chickpea Soybean- linseed Mean	2036 1757 2288 2516 2149	1981 1680 2229 2427 2079	1736 1437 1831 2175 1795	1786 1485 1996 2227 1873	1857 1506 2060 2284 1927	1960 1637 2194 2381 2043	1893 1584 2100 2335
Calicut	Ginger (Varada) Ginger (Rejatha) Ginger (Mahima) Mean Turmeric (Alleppey Supreme) Turmeric (Prathibha) Mean Black pepper-fellow	25100 24500 19500 23033 15200 15200 15200 15250 1800	20500 13700 23800 19333 16700 17000 16850		19800 14300 19500 17867 18300 21700 20000 1130		15400 12600 13000 13667 22600 21200 830	20200 16275 18950 18200 18450 1253
Dharwad	Cowpea-safflower Pigeonpea Sorghum-greengram Groundnut + hybrid cotton (2:1) Maize-chickpea Mean	4294 2484 7322 8459 2550 5022	3928 2393 7093 8114 2393 4784	3706 2197 6499 7505 2197 4421	4545 2653 7619 8549 2653 5204	4311 2617 7509 8191 2551 5036	4091 2441 7093 8143 2474 4848	4146 2464 7189 8160 2470
Jabalpur	Basmati rice – durum wheat-green manure Basmati rice – chickpea - maize fodder Basmati rice – berseem (fodder and seed) Basmati rice – vegetable pea- sorghum (fodder) Mean	5441 15666 44644 24121 22468	5013 14260 42755 22436 21116	5482 15544 45017 23309 22338	5215 14711 44319 25156 22350	5837 16550 46559 25609 23639	5147 14409 38324 20503 19596	5356 15190 43603 23522
Karjat	Rice-groundnut Rice-maize (sweet corn for cob) Rice-mustard Rice-dolichos bean (for green pod vegetable) Mean	15949 25368 8598 19022 17234	15016 25182 8512 18599 16827	14356 20612 7344 16370 14671	13962 20491 7080 16219 14438	15153 21235 7738 17235 15340	13430 20320 6811 15766 14082	14644 22201 7681 17202

Location	Cropping Systems/	Organi	Organic management	Inorc	Inorganic management	Integrated management	anagement	Mean
	Management practice	100% organic	75% organic + 2 innovative inputs	100% inorganic	State recommendation + farmer's package	50% organic+ 50% inorganic	75% organic+ 25% inorganic	
Ludhiana	Basmatti rice-chickpea Basmati rice-wheat Moong-wheat Pegionpea -wheat Mean	5859 6162 2853 3624 4624	5820 6078 2631 3543 4518	5093 7583 3366 4429 5118	5020 7227 3296 4360 4976	5924 7168 3383 4159 5159	5841 7192 3273 4031 5084	5593 6902 3133 4024
Modi- puram	Basmati rice- wheat (durum) - sesbania (green manure) Rice- barley (malt) - green gram Maize (pop corn) - potato- okra + sesbania (green manure) Maize (sweet corn) - mustard - sesbania (green manure) Mean	6901 9922 9322 15980 10531	6931 9972 9052 17090 10761	5033 7527 6935 12810 8076	5793 8833 7808 14980 9353	7059 10487 8576 16410 10633	7374 10832 9011 17160 11094	6515 9596 8451 15738
Pantnagar	Pantnagar Basmati rice-wheat -ses <i>bania</i> (GM) Basmati rice-chickpea + coriander- sesbania (green manure) Basmati rice-vegetable pea+coriander sesbania (green manure) Basmati rice-potato-ses <i>bania</i> Mean	5818 6374 4641 5759 5648	5807 6253 4648 5659 5592	5967 5958 4467 5316 5427	6014 6260 4598 5438 5577	4992 4964 3652 3434 4260	4894 4559 3487 3657 4149	5582 5728 4249 4877
Raipur	Soybean-maize Soybean-pea Soybean-chilli Soybean-onion Mean	9968 8407 8838 11587 9700	9178 7699 8306 11041 9056	8539 7146 7507 9906 8274	8793 7589 8069 10297 8687	8073 6998 7376 9557 8001	8107 6884 7339 9266 7899	8776 7454 7906 10275
Ranchi	Basmati rice -wheat Basmati rice-potato Basmati rice-linseed Basmati rice-lentil Mean	6147 14324 5635 4280 7597	6036 13984 5395 4020 7359	5539 10767 4203 3577 6021	4806 9624 3856 3110 5349	5906 12753 5109 4163 6983	5744 12157 4977 3951 6707	5696 12268 4862 3850

28 Annual Report 2014-15

nutrients and integrated package of pest and disease management. It is also important to note that *kharif* and *rabi* tomato, summer french bean, rabi cauliflower, summer squash and rabi pea recorded higher yield with organic crop management with only 75% nutrients supplied through organic manures, thus implying possibility of reduced manure application after building up of soil organic carbon. However, in case of rabi cauliflower, *kharif* blackgram and okra, yield reduction of 22, 3 and 10% was observed with reduced application of nutrients in the form of organic manures under organic management. Residues yield of crops also followed the similar trend. In terms of system equivalent yield, among the different management practices, inorganic management with 100% recommended dose of nutrients resulted in higher tomato equivalent yield (28883 kg/ha) of system across the cropping systems. Among the organic management, application of 75% nutrients only through organic manures, the yield was at par (24931 kg/ha) with organic management with 100% nutrients. Among the different systems evaluated, blackgram-cauliflower-summer squash resulted in higher system equivalent yield of 37223 kg/ha.

Bhopal: Soybean based cropping systems were evaluated. Due to the rainfed situation, all the crops evaluated in cropping systems recorded higher yield under organic management compared to integrated and inorganic practices. Organic management package with 75% nutrients only through organic manures+innovative practices recorded comparable yield with that of organic management with 100% nutrients through manures. The yield difference observed between 75 and 100% nutrients application through organic manures under organic management was only 4.8, 1.2, 2.5, 5 and 1.8% for soybean, durum wheat, mustard, chickpea and linseed respectively. *These findings are very important as it gives scope to reduce the 25%*

Wheat under towards organic (integrated) crop management practice at Bhopal

manure application thus directly reducing the cost of cultivation under organic management, than all the other management practices such as inorganic (100% inorganic management and state recommendation)

General view of evaluation of management practices for ginger at Calicut

and integrated (50 % inorganic + 50% organic, 75% organic, 25% inorganic) crop management. Straw yield of crops also recorded similar trend. In terms of system (soybean) equivalent yield, organic management registered higher yield (2149 and 2079 kg/ha under organic management with 100% and 75% nutrients through organic manures respectively) than integrated and inorganic management packages. Among the systems, soybean-linseed recorded higher yield (2335 kg/ha) followed by soybean-chickpea.

Calicut: Spices crops such as ginger, turmeric and black pepper were evaluated under different management packages. Ginger recorded

significantly higher yield (23033 kg/ha) under organic management with 100% nutrients through organic manures compared to other management practices. Among the 3 varieties of ginger, varada recorded higher yield (25100 kg) under organic management. Reduction of 25% nutrients under organic management resulted in significant yield reduction of 16% implying required application of 100% nutrients for ginger in the term of organic manures every year. Turmeric recorded significantly higher yield (21200 kg/ha) with integrated package consisting of 50% organic +50% inorganic. However among the organic management, reduced application of nutrients (75% and 100%) through organic manures resulted in higher yield of turmeric (16850 kg/ha) than organic crop management with 100% nutrients (15250 kg/ha). Alleppey supreme variety of turmeric recorded higher yield than Prathiba in integrated package. However, under organic management, Prathibha variety performed better. Black pepper recorded significantly higher yield (1800 kg/ha) under organic management than inorganic and integrated packages. The yield increase was found to be 59 and 116% over inorganic and integrated package.

Coimbatore: Crops such as cotton, maize, chillies, sunflower and beetroot were evaluated in 3 cropping systems. Among the crops evaluated in cropping systems, maize, chiliee, sunflower and beetroot recorded higher yield under integrated package with 75% organic +25% inorganic. Cotton recorded higher yield under state recommendation of applying 100% nutrients through inorganic sources coupled with application of organic manures. Among the organic management, all the crops registered higher yield under reduced application of manures (75% nutrients only through organic manures with total organic management) compared to 100% nutrients supply through organic manures. The yield increase was found to be 18, 12, 14, 7.4 and 6% for cotton, maize, chillies, sunflower and beetroot respectively. Residues/straw yield also exhibited the similar trend.

Performance of beetroot under integrated crop management at Coimbatore

Performance of cotton under integrated crop management at Coimbatore

Dharwad: All the evaluated crops except green gram recorded higher yield under state recommendations consist of organic and inorganic. Cowpea, safflower, pigeon pea, sorghum, groundnut, cotton and chickpea recorded higher yield (1270, 1542, 2653, 4586, 4430, 1637&1551 kg/ha respectively) under state recommendation of nutrient supply. green gram recorded highest yield (1322 kg/ha) under integrated nutrient management package with 50% organic + 50% inorganic nutrient sources which was at par with inorganic nutrient packages. The yield reduction under organic management found in safflower, pigeonpea, green gram, sorghum, groundnut, hybrid cotton, maize and chilli were 18.6, 20.8, 15.1, 12.6, 18.6 & 20.8

% respectively over inorganic nutrient packages. The straw yield also gave similar trend. The system equivalent yield was found to be higher (5204 kg/ha) under state recommendation. Among the cropping systems, groundnut-hybrid cotton recorded higher yield (8160 kg/ha) among all the cropping systems followed by sorghum-green gram (7189 kg/ha) cropping system.

Jabalpur: Rice based cropping system with crops such as wheat, chickpea, maize, berseem, pea and sorghum were evaluated. Rice recorded higher yield under organic package with 100% organic nutrient supply and integrated package with 50% organic and 50% inorganic nutrient source. Whereas wheat (3522 kg/ha), maize (41100 kg/ha), berseem (fodder and seed) (241 & 92200 kg/ha), pea (4166 kg/ha) were recorded higher under inorganic nutrient package with 100% inorganic nutrient management. Sorghum recorded higher yield under integrated crop management package with 75% organic and 25% inorganic nutrient sources. The yield reduction of rice, wheat, maize, berseem, pea and sorghum in organic management with 75% nutrients through

Performance of rice under different management practice at Jabalpur

organic manure was found to be 7.9, 7.8, 6.1, 5.8, 4.8, and 5.9 % respectively over 100% nutrients based organic management. Straw yield also recorded same trends. Rice equivalent yield of system were found to be higher (23639 kg/ha) with management package having 50% organic and 50% inorganic nutrient sources. In terms of cropping systems higher yield (43603 kg/ha) were found with rice-berseem (seed &fodder) followed by basmati rice-vegetable pea-sorghum (23522 kg/ha).

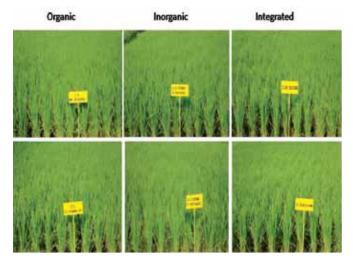
Performance of maize and groundnut under organic management at Karjat

Karjat: Rice based cropping system were evaluated. Among the different crops, rice recorded higher yield (3914 kg/ha) in integrated nutrient package with 50% organic and 50% inorganic nutrient supply. Groundnut, maize, mustard and dolichos, recorded higher yield with inorganic nutrient package having 100% nutrient supply. Inorganic nutrient management practices were found to be better for mustard, groundnut and dolichos. The reduction of yield of rice, groundnut, maize, mustard and dolichos with 75% nutrient supply through organic manure over 100% nutrient under organic management were recorded 1.8, 7.8, 1.0, 4.0, & 2.0% respectively. Straw yield also gave to be similar trend. The rice equivalent system yield were

recorded higher (19022 kg/ha) with organic package having 100% nutrients through organic manure. Rice- maize was found to be performing better (22201 kg/ha) compared to other cropping systems.

Ludhiana: Basmati rice based cropping systems were evaluated. Among the crops evaluated, chick pea (1470 kg/ha) and rice (4180 kg/ha) recorded higher yield under organic nutrient package. This was also at

Comparison of soil condition under inorganic and organic management at Ludhiana



Monitoring of experiment by University official at Ludhiana

Observations on insect pest attack on rice at Ludhiana

Modipuram: Different crops were evaluated in rice and maize based cropping system. Rice, wheat, barley, greengram, maize (popcorn), maize (sweet corn), recorded higher yield (4680, 4190, 4120, 885, 2270, 11730 kg/ha respectively) under integrated management system with 75% organic + 25% inorganic nutrient sources. Potato, okra and mustard recorded higher yield (23830, 9860 & 2090 kg/ha respectively) under organic management. Straw yield also gave similar trend. The system equivalent yield were recorded higher (11094 kg/ha) in integrated packages with 75% organic and 25% inorganic nutrients. Among all the cropping systems, higher yield (15738 kg/ha) was recorded with maize (sweet corn)-mustard-sesbania system. par with integrated and inorganic packages. Crops such as pigeon pea (620 kg/ha) was found to be better under state recommendation package. Wheat recorded higher yield (5800 kg/ha) in integrated package with 50% each organic and inorganic nutrient supply. Residue yield of all the crops also resulted in similar trend. In terms of system equivalent yield, integrated management with 50% organic +50% inorganic source of nutrient resulted in higher rice equivalent yield (5159 kg/ha) as compared to other nutrient packages. In term of cropping systems, rice equivalent yield found higher (6902 kg/ha) was higher with basmati rice- wheat.

Performance of rice under organic, inorganic and integrated management at Modipuram

Pantnagar: Rice based cropping system was evaluated under different management packages, rice recorded higher yield (3519 kg/ha) under integrated management with 75% organic + 25% inorganic nutrient sources compared to other packages. Wheat recorded higher yield (5107 kg/ha) under integrated package (50% organic + 50% inorganic). Crops like chickpea, vegetable pea, potato recorded higher yield of 1202, 4321, & 8513 kg/ha respectively under organic package of nutrient respectively. The yield increase was found to be 1.0 % in rice and yield reduction in wheat, chick pea, pea, & potato was found to be 1.5, 5.4, 1.9, & 6.0 % respectively under organic management with 75% nutrients over 100% nutrients. Straw yield also gave similar trend. The rice equivalent system yield was found to be higher (5648 kg/ha) with organic management having 100% nutrients. Among all the cropping systems, higher system equivalent yield (5928 kg/ha) was recorded with rice-chickpea +coriander-sesbania system.

Performance of potato under organic management system at Pantnagar

Performance of rice under organic management at Pantnagar

Raipur: Cropping systems such as soybean-maize, soybean-pea, soybean-chili, and soybean-onion were evaluated with different management packages. Soybean (*kharif*) with chili recorded higher yield (2088 kg/ha) under state recommendation. Maize also recorded higher yield (8633 kg/ha) under state

Performance of onion under organic management at Raipur

Performance of maize under organic management at Raipur

recommendation. Pea, chili and onion recorded higher yield (7067, 9967 and 10400 kg/ha respectively) under state recommendation. The yield differences under inorganic package (from 100% to state recommendation) were found to be 16.8, 2.0, 5.0, 4.6 and 2.3% with soybean, maize, pea, chili and onion respectively. The straw yield trend of all crops was also to be found similar. The soybean equivalent system yield of 9700 kg/ha was found higher under organic package having 100% nutrients. Soybean onion registered higher system equivalent yield (10275 kg/ha) compared to other cropping systems.

Ranchi: Different crops such as wheat, potato, linseed, & lentil were evaluated in basmati rice based cropping system. In rice higher yield (3570 kg/ha) was found with organic package of nutrient with 100% organic nutrient sources. Wheat recorded highest yield (3000 kg/ha) under inorganic package with 100% inorganic nutrients which was at par with integrated nutrient package. Potato and linseed recorded higher yield (19007 & 803 kg/ha) under organic package of nutrient respectively. Lentil recorded higher yield (560 kg/ha) under integrated nutrient package (50% organic+ 50% inorganic). The yield reduction in wheat, rice, potato and linseed under inorganic nutrient package (100% to state recommendation) were recorded 16.7, 2.1, .8 & 6.0% respectively over organic management. The straw yield found similar trend. System equivalent yield was higher (7597 kg/ha) with organic nutrient package with 100% organic source of nutrients. Among the cropping systems, rice-potato recorded higher system equivalent yield (12268 kg/ha).

Umiam: Two different experiments were evaluated. Rice based cropping system with different varieties of crops were evaluated. Rice resulted in higher yield (4180 kg/ha) with integrated nutrient package having 50% organic + 50% inorganic sources. Carrot, potato and tomato recorded highest yield 13220, 14370 and 14810 kg/ha under organic nutrient package with 100% nutrient supplied through organic manures. Only frenchbean recorded highest yield (8560 kg/ha) under inorganic package. Among the varieties of rice, Sharang-1 performed well and recorded higher yield (4470 kg/ha). Straw yield of crops was also found to be in similar trend. The rice equivalent system yield was recorded higher (20630 kg/ha) under integrated nutrient package with 50%

Organic management of vagetable based cropping system at Umiam

organic+ 50% inorganic. In case of cropping system highest yield was recorded with rice-tomato system.

Influence of organic management package with reduced dose of organic manures, integrated and inorganic management packages on soil physical and chemical properties (Table 7.1.4 to 7.1.7)

Bajaura: There is no much variation in electrical conductivity among different management packages and cropping systems. The soil pH indicated normal range of 6.40 -7.50. in term of soil organic carbon, organic management with 100% nutrients through organic manures recorded higher organic carbon (1.06%) followed by organic matter with 75% nutrients through organic manure (0.98%) which is 51 and 40% higher than inorganic management with 100% nutrients. Although tomato-cauliflower–french bean system recorded higher organic carbon (0.83%), the variation with other systems is only 0.04%. organic integrated crop management practices resulted in higher soil available N at the end of cropping cycle than inorganic management. Around 9.7% higher soil available N was recorded under organic than inorganic management.

Table 7.1.4. Influence of organic, inorganic and integrated package on soil physico-chemical properties (bulk density and electrical conductivity) at the end of cropping cycle at various locations

Treatments /				Bulk density	ansity					Ē	Electrical conductivity	ductivity		
Management practice	Organic management	nic ement	Inorganic management	anic ∋ment	Integrated management		Mean	Org: manag	Organic management	Inorganic management	anic ∋ment	Integ manag	Integrated management	Mean
	100% 75% organic organic +2 innovativ inputs	. O	100% State inorganic recomm- endation/ farmer's package	State recomm- endation/ farmer's package	50% organic + 50% inorganic	75% organic + 25% inorganic		100% organic i	75% organic i +2 innovative inputs	100% inorganic	State recomm- endation/ farmer's package	50% organic + 50% inorganic	75% organic + 25% inorganic	
Bhopal														
Soybean-wheat								0.17	0.19	0.16	0.18	0.19	0.16	0.18
Soybean-mustard								0.18	0.18	0.18	0.16	0.16	0.16	0.17
Soybean-chickpea Sovhean-linseed								0.17	0.17	0.17	0.16 0.23	0.14	0.18	0.19
Mean								0.18	0.18	0.18	0.18	0.17	0.17	
Dharwad														
Cowpea-safflower	1.19	1.19	1.25	1.23	1.21	1.25	1.22	0.13	0.14	0.11	0.13	0.12	0.08	0.12
Pigeonpea (Sole)	1.19	1.20	1.27	1.26	1.20	1.23	1.23	0.09	0.10	0.09	0.11	0.09	0.12	0.10
Greengram-sorghum	1.18	1.22	1.29	1.25	1.24	1.26	1.24	0.36	0.11	0.10	0.08	0.30	0.10	0.18
Groundnut + hybrid cotton	1.17	1.20	1.26	1.26	1.27	1.23	1.23	0.12	0.12	0.10	0.09	0.14	0.11	0.11
Maize-chickpea	1.18	1.18	1.23	1.22	1.26	1.23	1.22	0.09	0.09	0.12	0.15	0.13	0.13	0.12
Mean	1.18	1.20	1.26	1.24	1.24	1.24		0.16	0.11	0.10	0.11	0.16	0.11	
Jabalpur														
Basmati rice -wheat-green	1.27	1.27	1.39	1.38	1.31	1.30	1.32	0.57	0.58	0.71	0.70	0.65	0.63	0.64
Basmati rice – chickpea -	1.29	1.28	1.41	1.41	1.32	1.30	1.34	0.56	0.56	0.66	0.64	0.59	0.59	09.0
Basmati rice – berseem	1.28	1.26	1.41	1.40	1.32	1.31	1.33	0.54	0.55	0.66	0.65	0.6	0.59	0.60
(rodder and seed) Basmati rice – vegetable	1.28	1.27	1.39	1.37	1.31	1.29	1.32	0.58	0.59	0.63	0.63	0.64	0.62	0.62
Mean	1.28	1.27	1.40	1.39	1.32	1.30		0.56	0.57	0.67	0.66	0.62	0.61	
Modipram														
Basmati rice- wheat -								0.12	0.12	0.12	0.12	0.12	0.13	0.12
Rice-barley (malt) - green								0.12	0.12	0.11	0.12	0.11	0.11	0.12
gram Maize (pop com) – potato								0.17	0.17	0.16	0.32	0.30	0.33	0.24
-okra + <i>sesbania</i> green manure	lie													

Treatments /		Bulk density	ensity				Ē	Electrical conductivity	luctivity		
Management practice	Organic management	Inorganic management	Integrated management	ated Mean ement	Org manag	Organic management	Inorganic management	anic ement	Integrated management	rated Jement	Mean
	100% 75% organic organic +2 innovative inputs	100%75%100%Stateorganicorganicinorganicrecomm-+2endation/innovativefarmer'sinputspackage	50% organic + 50% inorganic	75% organic + 25% inorganic	100% organic ii	75% organic i +2 innovative inputs	75% 100% organic inorganic +2 nnovative inputs	State recomm- endation/ farmer's package	50% organic + 50% inorganic	75% organic + 25% inorganic	
Maize (sweet corn) – mustard - se <i>sbania</i> green manure Mean	ard				0.25 0.17	0.25 0.17	0.16 0.14	0.26 0.21	0.29 0.21	0.26 0.21	0.25
Pantnagar											
Rice-wheat - <i>sesbania</i> Rice-chickpea + coriander - sesbania					0.026 0.035	0.036 0.026	0.044 0.046	0.048 0.041	0.033 0.031	0.026 0.039	0.036 0.036
Rice-vegetable pea+ Coriander-ses <i>hania</i>					0.031	0.029	0.051	0.037	0.038	0.045	0.039
Rice-potato-sesbania Mean					0.043 0.034	0.022 0.028	0.042 0.046	0.036 0.041	0.036 0.035	0.032 0.036	0.035

Management practice				Hq	-						Organic ca	carbon		
	Organic management	anic ement	Inorganic management	anic ement	Integrated management		Mean	Organic management	Organic nagement	Inorganic management	anic ement	Integ manag	Integrated management	Mean
	100% organic i	100% 75% organic organic +2 innovative inputs	100% State inorganic recomm- endation/ farmer's package	State recomm- endation/ farmer's package	50% organic + 50% inorganic	75% organic + 25% inorganic		100% organic	75% organic + 2 innovative inputs	75% 100% organic inorganic +2 inovative inputs	State recomm- endation/ farmer's package	50% organic + 50% inorganic	75% organic + 25% inorganic	
Bajaura								(%)						
Tomato-cauliflower- french	7.20	7.10	7.50	7.40	6.20	6.80	7.00	1.25	1.11	0.66	0.69	0.56	0.71	0.83
Tomato-cauliflower Black gram-cauliflower-	7.30 7.50	7.40 7.40	7.60 7.60	7.30 7.50	6.40 6.60	7.10 7.00	7.20 7.30	0.96 1.11	0.92 1.02	0.78 0.53	0.87 0.74	0.52 0.62	0.69 0.74	0.79 0.79
summer squash Lady finger-pea Mean	7.40 7.40	7.50 7.40	7.40 7.50	7.40 7.40	6.30 6.40	6.90 7.00	7.20	0.91 1.06	0.86 0.98	0.82 0.7	0.86 0.79	0.69 0.6	0.72 0.72	0.81
Bhopal								(%)						
Soybean-durum wheat Soybean- mustard Soybean- chickpea Soybean- linseed Mean	7.76 7.80 7.77 7.68 7.68	7.77 7.87 7.77 7.78 7.78 7.80	7.88 7.78 7.88 7.74 7.82	7.86 7.91 7.72 7.72	7.78 7.81 7.77 7.77	7.76 7.91 7.78 7.84 7.82	7.80 7.85 7.81 7.76	0.93 0.76 0.71 0.83 0.83	0.83 0.70 0.67 0.78 0.75	0.49 0.51 0.55 0.54 0.52	0.61 0.51 0.55 0.55 0.55	0.70 0.63 0.53 0.71 0.64	0.73 0.61 0.66 0.66	0.72 0.62 0.61 0.68
Calicut								(%)						
Varada Rejatha Mahima Turmeric (Alleppey Supreme) Turmeric Prathibha) Blackpepper-fellow Mean	5.30 5.70 5.70 6.00 6.60 5.87	5.10 5.60 5.80 6.00 5.62	4.60 5.10 5.50 5.70 5.70 5.18		4.90 5.00 6.00 6.10 7.50 7.50		4.98 5.45 5.28 5.80 6.13	1.70 2.10 1.70 1.70 1.83	1.70 2.50 1.70 1.90 1.96	1.30 1.50 1.70 1.70 1.58		1.50 1.90 1.70 1.70 1.60		1.55 2.08 1.78 1.75 1.75 1.67
Dharwad														
Cowpea-safflower Pigeonpea Sorghum-greengram Groundnut + hybrid cotton	7.79 7.51 7.51 7.44	7.47 7.40 7.41 7.45	7.68 7.42 7.84 7.68	7.58 7.71 7.68 7.64	7.46 7.58 7.42 7.38	7.46 7.58 7.67 7.37	7.57 7.53 7.59 7.49	6.80 7.00 7.20 6.60	6.10 6.20 6.50 6.30	5.80 5.10 4.80 4.70	5.10 5.40 6.10 5.30	5.90 6.40 5.30	5.80 5.80 6.10 6.00	5.92 5.98 6.15 5.70
Maize-chickpea Mean	5.91 7.23	7.65 7.48	7.55 7.63	7.60 7.64	7.51 7.47	7.56 7.53	7.30	6.80 6.90	6.40 6.30	4.90 5.80	5.10 5.90	5.00 5.00	5.80 5.40	5.67
Jabalpur														
Basmati rice –wheat- oreen manure	7.21	7.22	7.22	7.21	7.21	7.20	7.21	8.12	8.09	7.06	7.00	7.99	7.85	7.69
Basmati rice – chickpea - maize (fodder)	7.20	7.22	7.20	7.28	7.25	7.23	7.23	7.72	7.67	6.66	6.45	7.39	7.30	7.20

Table 7.1.5. Influence of organic, inorganic and integrated package on soil pH and organic carbon at the end of cropping cycle at various locations

Management practice				Hq							Organic carbon	rbon		
	Organic management	inic sment	Inorganic management	anic ement	Integrated management		Mean	Organic manageme	Organic management	Inorganic management	anic ement	Integ manag	Integrated management	Mean
	100% organic ir	100% 75% organic organic +2 innovative inputs	100% inorganic	100% State inorganic recomm- endation/ farmer's package	50% organic + 50% inorganic	75% organic + 25% inorganic		100% organic ii	75% organic + 2 innovative inputs	75% 100% organic inorganic +2 inputs	State recomm- endation/ farmer's package	50% organic + 50% inorganic	75% organic + 25% inorganic	
Basmati rice – berseem (fodder and seed)	7.24	7.25	7.22	7.20	7.25	7.21	7.23	7.62	7.59	6.56	6.45	7.49	7.32	7.17
(rodder and seed) Basmati rice – vegetable nea- sorchrum (fodder)	7.26	7.26	7.27	7.26	7.27	7.25	7.26	7.92	7.85	6.96	6.80	7.59	7.46	7.43
Mean	7.23	7.24	7.23	7.24	7.25	7.22		7.85	7.80	6.81	6.68	7.62	7.48	
Modipuram								(%)						
Basmati rice- wheat -	8.20	8.20	8.40	8.30	8.30	8.30	8.28	0.77	0.74	0.62	0.73	0.73	0.70	0.72
Rice-barley (malt) -	8.00	8.10	8.70	8.40	8.20	8.20	8.27	0.50	0.44	0.40	0.43	0.43	0.40	0.43
Maize (pop corn) – potato– okra ± sashania gradon manura	7.60	7.50	7.80	7.40	7.40	7.60	7.55	0.55	0.50	0.35	0.44	0.55	0.53	0.49
Maize (sweet com) – mustard - sesbania green	7.80	7.40	7.90	7.30	7.40	7.50	7.55	0.62	0.46	0.40	0.44	0.59	0.52	0.51
Mean	7.90	7.80	8.20	7.85	7.83	7.90		0.61	0.54	0.44	0.51	0.58	0.54	
Pantnagar								(%)						
Rice-wheat -ses <i>bania</i> Rice-chickpea + coriander- sesbania	7.14 6.93	6.70 6.81	7.82 7.55	7.41 7.58	7.04 7.04	6.49 7.07	7.10 7.16	1.14 1.17	1.05 1.06	0.79 0.76	0.86 0.9	1.02 1.04	1.01 1.06	0.98 1.00
Rice-vegetable pea+ Coriander-ses <i>hania</i>	7.32	6.89	7.38	7.36	6.85	7.08	7.15	1.14	1.04	0.77	0.83	1.04	1.03	0.98
Rice-potato- <i>sesbania</i> Mean	7.24 7.16	6.99 6.85	7.92 7.67	7.47 7.46	6.94 6.97	7.04 6.92	7.27	1.23 1.17	1.13 1.07	0.88 0.80	0.87 0.87	1.06 1.04	1.08 1.05	1.04
Raipur								(%)						
Soybean-maize Soybean-pea Soybean-chilli Soybean-onion Mean								0.67 0.67 0.68 0.60 0.66	0.54 0.56 0.59 0.64 0.58	0.63 0.62 0.64 0.64 0.63	0.67 0.67 0.68 0.65 0.67	0.59 0.61 0.62 0.67 0.62	0.57 0.60 0.57 0.58 0.58	0.61 0.62 0.63 0.63

Management practice Available Nitrogen (kg/ha)			A	Available Nitro	e Nitrogen (kg/ha)					Availa	ble Phosph	Available Phosphorus (kg/ha)		
I	Organic management	nic ement	Inorganic management	anic ement	Integrated management		Mean	Org manag	Organic management	Inorganic management	anic ement	Integ manag	Integrated management	Mean
I	100% 75% organic organic +2 innovativ	' n	100% State inorganic recomm- endation/ farmer's package	State re comm- endation/ farmer's package	50% organic + 50% inorganic	75% organic + 25% inorganic		100% organic i	75% organic +2 innovative inputs	100% inorganic	State recomm- endation/ farmer's package	50% organic + 50% inorganic	75% organic + 25% inorganic	
Bajaura														
Tomato-cauliflower-french	252.6	249.7	225.4	231.2	243.6	246.4	241.5	92.3	88.2	33.6	34.8	58.2	55.1	60.4
Tomato-cauliflower Black gram-cauliflower-	243.2 237.4	241.6 232	238.1 203.5	243 210.6	226.3 259.4	224.2 256.4	236.1 233.2	98.3 78.9	92.0 75.0	36.8 32.1	37.5 34.0	53.1 50.2	51.0 47.6	61.5 53.0
summer squash Lady finger-pea Mean	259.1 248.1	256.3 244.9	221 222	224.2 227.3	269 249.6	266.5 248.4	249.4	76.0 86.4	74.2 82.4	33.0 33.9	35.2 35.4	70.9 58.1	67.4 55.3	59.5
Bhopal														
Soybean- durum wheat Soybean- mustard Soybean- chickpea Soybean- linseed Mean	203.4 209.9 199.4 221.0 208.4	200.7 200.3 185.2 215.3 200.4	187.1 195.3 200.7 184.0 191.8	174.6 194.4 181.9 176.7 181.9	189.2 204.3 200.7 218.5 203.2	211.2 201.7 198.9 200.7 203.1	194.4 201.0 194.5 202.7	36.3 40.5 26.2 37.9	34.6 30.2 25.5 33.5 30.9	15.7 24.2 15.5 24.7 20.0	13.2 17.1 16.7 15.2	28.7 27.2 23.9 30.4 27.6	29.3 28.2 25.2 29.8 28.1	26.3 27.9 21.7 30.7
Calicut														
Ginger (Varada) Ginger (Rejatha) Ginger (Mahima) Turmeric (Alleppey Supreme) Turmeric (Prathibha) Blackpepper-fellow Mean	113.0 118.0 122.0 101.0 283.0 140.7	114.0 116.0 97.0 116.0 114.6	113.0 111.0 108.0 102.0 205.0 123.8		111.0 117.0 107.0 107.0 245.0 245.0 235.0		112.8 115.5 101.8 109.3 244.3	17.6 42.3 52.3 7.2 23.0 17.0 26.6	43.6 22.0 35.3 16.6 26.2	60.0 53.0 86.6 15.3 38.0 43.9		96.6 91.6 182.3 24.6 21.0 44.0 76.7		54.5 52.2 89.1 13.9 33.0
Coimbatore														
Cotton-maize Chillies-sunflower Beetroot-maize Mean	261 259 418 313	252 268 411 310	230 248 335 271	236 250 328 271	333 368 465 389	342 375 457 391	276 295 402	12.0 11.5 9.4 11.0	11.8 12.4 9.5 11.2	12.4 13.9 11.0 12.4	12.2 15.7 11.2 13.0	9.2 9.4 9.7	9.5 9.7 10.1 9.8	11.2 12.1 10.3
Dharwad														
Cowpea-safflower Pigeon pea (sole) Sorghum-greengram Groundnut + hybrid cotton	306.7 284.0 284.0 291.7	290.3 287.7 279.7 272.7	244.7 255.0 258.3 241.3	282.0 277.3 259.0 261.0	282.3 248.7 288.3 288.3	279.3 279.3 288.7 274.7	280.9 272.0 276.3 271.6	30.4 33.4 35.6 32.5	29.7 28.2 34.3 33.8	25.0 24.3 23.6 27.3	29.2 26.7 28.8	27.8 26.7 32.5 25.0	26.7 26.5 27.3 34.5	28.1 27.6 29.9 30.3
∧ ') Maize-chickpea Mean	289.7 291.2	280.3 282.1	254.0 250.7	261.3 268.1	267.7 275.1	279.0 280.2	272.0	34.2 33.2	30.0 31.2	23.2 24.7	27.6 27.7	31.8 28.8	31.3 29.3	29.7

N

Management practice			ď	Available Nitrogen (kg/ha)	ogen (kg/ha)					Availa	ble Phosph	Available Phosphorus (kg/ha)		
1	Org manag	Organic management	Inorganic management	anic ement	Integrated management		Mean	Organic management	anic ement	Inorganic management	anic ement	Integ manag	Integrated management	Mean
1	100% organic ir	75% organic + 2 innovative inputs	100% inorganic	State recomm- endation/ farmer's package	50% organic + 50% inorganic	75% organic + 25% inorganic	1	100% organic ii	75% organic i +2 innovative inputs	100% inorganic	State recomm- endation/ farmer's package	50% organic + 50% inorganic	75% organic + 25% inorganic	
Jabalpur														
Basmati rice -wheat-	294.0	291.0	280.0	275.0	284.0	281.0	284.2	15.1	14.8	13.7	13.0	14.5	14.1	14.2
Basmati rice – chickpea - Maiza foddar	277.0	273.0	278.0	273.0	278.0	275.0	275.7	14.9	14.5	12.4	11.9	13.6	13.2	13.4
Basmati rice – berseem	291.0	288.0	279.0	276.0	291.0	288.0	285.5	14.2	14.0	13.5	13.0	14.3	14.0	13.8
(rouder and seed) Basmati rice – vegetable	282.0	276.0	265.0	261.0	272.0	270.0	271.0	14.3	14.0	12.9	12.1	14.2	19.8	14.6
Mean	286.0	282.0	275.5	271.3	281.3	278.5		14.6	14.3	13.1	12.5	14.2	15.3	
Ludhiana														
Basmatti rice-chickpea Basmati rice-wheat	350.2 297.2	334.4 280.2	265.2 252.6			320.5 282.4	317.6 278.1	64.9 60.1	60.9 54.6	42.9 38.2			54.1 52.1	55.7 51.3
Pigeonpea -wheat Mean	344.1 330.5	331.4 315.3	266.3 261.4			325.3 309.4	316.8	66.1 63.7	59.6 58.4	41.0 40.7			58.2 54.8	56.2
Pantnagar														
Rice-wheat -ses <i>bania</i> Rice-chickpea + coriander-	326 399	322 350	391 348	322 324	255 299	401 294	336 336	45.1 48.8	55.1 54.1	33.6 48.1	39.6 65.5	53.5 48.3	41.6 46.7	44.8 51.9
Rice-vegetable pea-	434	379	394	350	313	270	357	36.1	51.3	54.2	64.6	63.9	58.4	54.8
curaruer-ses <i>bania</i> Rice-potato-ses <i>bania</i> Mean	387 387	413 366	326 365	370 342	394 315	325 323	369	65.4 48.9	49.8 52.6	55.2 47.8	58.4 57.0	57.6 55.8	54.7 50.4	56.9
Raipur														
Soybean-maize Soybean-pea Soybean-chilli Soybean-onion Mean	230.0 224.0 225.0 230.0 227.3	227.0 224.7 226.7 225.7 226.0	239.0 234.7 236.7 234.7 236.3	238.0 239.3 241.3 239.7 239.6	232.0 231.7 233.0 227.7 231.1	225.7 225.0 225.3 227.3 225.8	231.9 229.9 231.3 230.8	13.8 14.5 14.6 14.0	12.8 12.1 12.5 12.5	14.1 15.3 14.7 14.9 7.4.7	16.1 15.5 14.7 15.4 15.4	14.5 14.9 14.1 14.1 15.1	13.5 12.9 13.1 13.1	14.1 14.2 14.0
Ranchi														
Rice(Birsamati) -wheat	287.5	283.8	246.3	242.2	266.6	270.9	266.2	59.5	58.9	62.8	61.3	56.7	55.2	59.1
Rice(Birsamati) -potato	311.5	304.0	266.7	256.4	281.2	284.4	284.0	62.3	61.0	64.2	63.0	57.8	56.8	60.8
Rice(Birsamati) -linseed	294.3	289.9	242.6	239.8	265.7	268.5	266.8	59.2	57.9	61.1	60.4	57.3	55.6	58.6
(Sriekriar) Rice(Birsamati) -lentil	299.6	299.7	248.7	246.1	278.4	280.9	275.6	54.1	52.8	59.8	58.9	56.1	55.0	56.1
(PL 4Uo) Mean	298.2	294.3	251.1	246.1	273.0	276.2		58.8	57.6	62.0	60.9	57.0	55.6	

Table 7.1.7. Influence of organic, inorganic and integrated package on soil available potassium at the end of cropping cycle at various locations

Management practice			Available	Potassium (I	kg/ha)		
		rganic agement	Inorg manag		Integrat manager		Mean
		75% organic + 2 innovative inputs	100% inorganic	State recomm- endation/ farmer's package		75% organic+ 25% inorganic	
Bajura							
Tomato-cauliflower- french bean	255.7	252.3	118.6	125.3	228.0	226.8	201.1
Tomato-cauliflower	261.5	258.2	132.0	138.7	187.4	182.6	193.4
Black gram-cauliflower- summer squash	145.2	140.0	110.4	116.3	192.5	189.6	149.0
Lady finger-pea	316.4	300.6	118.6	125.2	334.8	327.4	253.8
Mean	244.7	237.8	119.9	126.4	235.7	231.6	
Bhopal							
Soybean-durum wheat	560.4	531.1	572.5	556.6	489.9	609.3	553.3
Soybean-mustard	544.3	499.9	474.5	489.8	503.6	531.6	507.3
Soybean-chickpea Soybean-linseed	496.5 544.3	447.6 488.3	451.0 504.4	392.7 521.5	441.3 551.0	489.1 493.9	453.0 517.2
Mean	536.4	400.3	504.4 500.6	490.2	496.5	493.9 531.0	517.2
Calicut							
Ginger (Varada)	90.3	123.3	153.6		133.3		125.1
Ginger (Rejatha)	106.0	136.0	99.0		135.0		119.0
Ginger (Mahima)	107.6	100.6	131.0		173.3		128.1
Turmeric (Alleppey Supreme)	110.0	104.0	125.0		142.0		120.3
Turmeric (Prathibha)	110.0	112.0	122.0		119.0		115.8
Blackpepper-fellow	255.0		225.0		241.0		240.3
Mean	129.8	115.2	142.6		157.3		
Coimbatore							
Cotton - maize	462	431	419	428	462	466	445
Chillies - sunflower Beetroot - maize	469 484	485 482	452 468	474 464	487 482	491 477	476 476
Deetroot - maize	404 472	466	400	464	402 477	478	470
Dharwad							
Cowpea-safflower	423.3	412.0	312.0	317.0	404.7	392.7	377.0
Pigeonpea	406.0	395.3	324.0	318.7	367.0	405.7	369.5
Sorghum-greengram	409.3	416.7	306.7	320.7	391.3	412.7	376.2
Groundnut + hybrid cotton (2:1)	425.3	404.7	314.7	352.7	389.0	405.0	381.9
Maize-chickpea	402.0	395.3	298.0	366.7	385.0	377.3	370.7
Mean	413.2	404.8	311.1	335.2	387.4	398.7	
Jabalpur							
Basmati rice-durum	269.0	267.0	252.0	250.0	266.0	265.0	261.5
wheat-green manure Basmati rice-Chick-	268.0	267.0	248.0	245.0	260.0	257.0	257.5
pea - maize fodder	200.0	207.0	240.0	240.0	200.0	207.0	207.0
Basmati rice – berseem (fodder and seed)	268.0	266.0	249.0	244.0	263.0	260.0	258.3

Management practice			Available	Potassium (I	kg/ha)		
		rganic agement	Inorg manag		Integrat manager		Mean
		75% organic + 2 innovative inputs	100% inorganic	State recomm- endation/ farmer's package		75% organic+ 25% inorganic	
Basmati rice – vegetable pea- sorghum (fodder)		265.0	236.0	230.0	259.0	255.0	252.0
Mean Ludhiana	268.0	266.3	246.3	242.3	262.0	259.3	
Basmatti rice-chickpea Basmati rice-wheat Moong-wheat	192.2 186.6	182.6 176.6	135.6 130.6			188.2 174.4	174.7 167.1
Pegionpea-wheat Mean	192.6 190.5	190.6 183.3	130.4 132.2			188.2 183.6	175.5
Modipuram							
Basmati rice- wheat (durum) - <i>sesbania</i> green manure	317.0	310.2	182.6	197.1	241.9	247.5	249.4
Rice- barley (malt) - green gram	337.1	328.2	321.4	317.0	283.4	277.8	310.8
Maize (pop corn) – potato– okra + <i>sesbania</i> green manure	300.2	310.2	274.4	287.8	317.0	297.9	297.9
Maize (sweet corn) – mustard - <i>sesbania</i> green manure	336.0	350.6	256.5	379.7	292.3	376.3	331.9
Mean	322.6	324.8	258.7	295.4	283.7	299.9	
Pantnagar							
Rice-wheat- <i>sesbania</i> Rice-chickpea + coriander- <i>sesbania</i>	210.3 248.5	234.4 259.2	255.0 258.1	225.3 262.2	255.0 258.1	225.3 262.2	234.2 258.1
Rice-vegetable pea+ coriander-sesbania	236.5	242.5	262.0	245.6	262.0	245.6	249.0
Rice-potato- <i>sesbania</i> Mean	238.9 233.6	245.5 245.4	246.2 255.3	245.4 244.6	246.2 255.3	245.4 244.6	244.6
Raipur							
Soybean-maize Soybean-pea Soybean-chilli Soybean-onion Mean	263.7 266.3 268.0 268.3 266.6	253.3 256.2 259.3 260.5 257.3	292.4 290.2 290.0 294.7 291.8	298.0 331.3 297.0 301.1 306.9	282.7 298.3 280.1 280.3 285.4	278.0 275.3 277.7 278.3 277.3	278.0 286.3 278.7 280.5
Ranchi							
Rice(Birsamati)-wheat (K 9107)	210.3	206.1	150.8	142.6	175.9	177.8	177.2
Rice(Birsamati)-potato (Kufri Ashoka)	218.8	213.3	156.8	147.4	182.6	184.5	183.9
Rice(Birsamati)-linseed (Shekhar)	218.6	216.0	147.7	143.6	178.0	179.9	180.6
Rice(Birsamati)-lentil (PL 406)	216.5	215.8	146.1	141.3	162.9	164.4	174.5
Mean	216.0	212.8	150.4	143.7	174.8	176.7	

Due to the presence of leguminous crop of pea in lady finger-pea system, higher soil available N was noticed in this system. In term of soil available phosphorous, organic management with 100% or 75% nutrients through organic manure recorded higher available phosphorous (86.4 and 82.4 kg/ha) than inorganic and integrated packages. Among the cropping systems except black gram-cauliflower-summer squash, all other systems recorded higher and on par availability of phosphorous. Soil available potassium was also found to higher (95%) with organic than inorganic management. Integrated package recorded higher soil potassium than inorganic but increase is lesser than the organic management package. Lady finger- pea system resulted in maximum soil available K (253.8 kg/ha).

Bhopal: There was no much variation was recorded (0.17 to 0.18) in electrical conductivity among all the management practices as well as cropping systems. The pH range was recorded (7.76-7.83) among different management practices. Organic carbon recorded higher (0.81%) under organic package with 100% nutrient through manure and it was 33.3 and 19.8 % higher than inorganic and integrated packages respectively. Higher available N, P and K were recorded under organic practices with 100% nutrient through manure. Available N was 10.3% higher with inorganic and at par with integrated package. P recorded 53.6 and 26.4% higher than inorganic and integrated respectively. Available K recorded 7.6 higher with inorganic and at par with integrated nutrient package. In term of cropping systems, soybean-linseed performs better with available N and P whereas soybean-durum wheat recorded higher available K.

Calicut: Acidic condition was found at Calicut. The pH range was recorded from 5.18 to 5.8. In term of organic carbon, higher OC% (1.96%) was recorded under organic package of nutrient with 75% nutrient through organic manure. It was found 19.38 and 12.2 % higher than inorganic and integrated nutrient packages. Higher available nitrogen (140.7kg/ha) recorded under organic management with 100% organic nutrient through manure. Integrated management with 50% organic and 50% inorganic perform batter in term of available P (76.7kg/ha). It was higher 42.76% and 65.5% than inorganic and organic respectively. In term of available K were recorded (157.3kg/ha) under integrated nutrient package and it was 9.3 and 22.12% higher with inorganic and organic respectively. In term of variety permanence, black piper perform good result with high available N (245kg/ha) and K (240.3 kg/ha) whereas ginger variety Mahima recorded higher available P (89.1 kg/ha).

Coimbatore: Available N P and K were calculated. Higher available N was recorded under integrated nutrient management with 75% organic and 25% inorganic. The available N reduction was found 25.4 and 44.2% compare with organic and inorganic respectively. Higher available P (13 kg/ha) recorded under inorganic management with state recommendation. It was 14.6 and 25.3% higher than organic and integrated respectively. Higher available K were recorded (478 kg/ha) under integrated nutrient management package and it was at par with organic and inorganic management package. In term of cropping systems, beetroot-maize system recorded higher available N (402 kg/ha) and chili-sunflower perform well with available P and both cropping system perform well with available.

Dharwad: Physical and chemical properties of soil were estimated. Lower bulk density (1.17 g/cc) and EC (0.08 ds/m) were recorded under organic and inorganic nutrient packages respectively. The pH range 7.23-7.64 was recorded among different management packages. higher organic carbon (6.90%) were recorded under organic nutrient practice with 100% nutrient supply through manure which was 15.12% and 24.6% higher than inorganic and integrated package respectively. There is no significant effect were found about these nutrients among all the cropping systems. In term of higher available N, P and K (306.7, 35.6 and 425.3 kg/ha), it was recorded under organic nutrient management with 100% nutrient supply

through organic manure. Nitrogen was found 14.1% and 8.4% higher than inorganic and integrated management practices respectively. Cowpea-sawflower resulted higher available nitrogen. Available P was recorded 30% and 16% higher than inorganic and integrated management practices. Groundnut-hybrid cotton copping system recorded higher available k 30.3 kg/ha and 381.9 kg/ha among the rest cropping systems. Available K found 21.8% and 4.9% higher than inorganic and integrated management practices management practable K found 21.8% and 4.9% higher than inorganic and integrated management packages.

Jabalpur: At the end of cropping cycle, soil pH, organic carbon bulk density and available NPK were estimated. Lower bulk density (1.26 g/cc) and EC (0.54 ds/m) were recorded under organic nutrient package. There is no much variation found in soil pH. It shows range (7.22-7.25). Higher organic carbon was recorded under organic package with 100% nutrient and it was found 13.4% and 2.5% increase over inorganic and integrated nutrient packages respectively. Available nitrogen and potassium found higher 294 kg/h and 269 kg/ha respectively under organic package of nutrient with 100% nutrient through manure whereas, in term of available phosphorous it was recorded higher (19.8 kg/ha) under integrated nutrient management practice.

Ludhiana: Soil chemical properties available N, P and K were estimated. Higher available N and P (330.5 & 63.7 kg/ha) were recorded under organic nutrient management with 100% nutrient through manure. Available N and P were 20.9, 6.4 and 36.1, 13.9 % higher than inorganic and integrated nutrient package respectively. Higher available K (190.5 kg/ha) recorded under organic nutrient package with 100% nutrient through manure. It was 30.6% higher than inorganic management and at par with integrated management package. In term of cropping systems, basmati rice- chick pea perform well with available N whereas there was no much variation found with available P and K among all the cropping systems.

Modipuram: Soil EC, pH, organic carbon and available potassium were estimated during the year. Significant variation was found in soil Ec. Lower EC was recorded under inorganic nutrient package. pH range found 7.3-8.70. In term of organic carbon also a significant variation found under different nutrient package and cropping system. Higher organic carbon (0.77 %) were recorded under organic package with 100% nutrient through organic manure followed by organic package with 75% nutrient through manure.. organic package were found 12.3 and 7.1% higher than inorganic and integrated management packages respectively. Basmati rice-wheat-*sesbania* cropping system recorded higher organic carbon (0.70) which was higher than rest cropping systems. In term of available K, higher K (379.7 kg/ha) recorded under inorganic package with state recommendation of nutrient which was 9.5% and 11.9% higher than organic and integrated packages respectively. In term of cropping systems, highest available K were recorded under maize-mustard-*sesbania* cropping system.

Pantnagar: Electric conductivity, pH, organic carbon and available NPK were estimated during the year. Lower EC was recorded under organic package with 75% nutrient through organic manure as compare with other nutrient packages. Range of pH (6.49-7.92) was recorded under all the management packages. In term of organic carbon, higher organic carbon were recorded under 1.23% under organic package of nutrient with 100% nutrient through manure which was also 28.9% and 13% higher than inorganic and integrated package respectively. Rice-potato-susbania recorded higher organic carbon 1.04% which was nearly similar than other cropping system. Organic crop management resulted higher N (434 kg/ha) which was 14.28 and 32.8 % higher than inorganic and integrated nutrient management.

Raipur: There is not much variation were recorded in organic carbon under all management practices. Higher organic carbon (0.67%) recorded under inorganic management practices with state recommendation. It was found at with 100% organic nutrient packages and integrated nutrient packages. There was also no variation recorded In respect of cropping systems. In term of available NP and K, higher value were recorded 239.6, 15.4 and 306.9 kg/ha respectively under inorganic package with state recommendation. These were found higher (5.4 and 4.6) % and (12.9 & 10.4%) and (14.6 & 8.3%) than organic and integrated respectively.

Ranchi: Soil chemical properties available N, P and K were calculated. Soil available N and K were recorded higher (298.2 and 216 kg/ha) under organic management practices with 100% nutrient through manure. Available N and K was recorded (16.6 & 7.9%) and (31.7 &18.6%) higher than inorganic and integrated nutrient management. Available P (62 kg/ha) was recorded under inorganic nutrient management. In term of cropping system, basmati rice- potato (kufri ashoka) perform well with available nitrogen whereas there was no much variation was found with available P and K under all cropping systems.

Influence of organic management package with reduced dose of organic manures, integrated and inorganic management packages on available micronutrient (Table 7.1.8 to 7.1.9)

Bajaura: Soil available micronutrient iron, manganese, zinc and copper were estimated. Higher available iron, manganese and copper (10.73, 9.55 and 1.50 ppm) were recorded under inorganic nutrient package with 100% inorganic nutrient. Fe, Mn and Cu were (27.39 & 34.85 %), (47.33 & 41.15 %) and (26.6 & 40.6 %) higher than organic and integrated nutrient management respectively whereas, higher zinc (3.36 ppm) was recorded under integrated management practice with 75% organic + 25% inorganic nutrient through fertilizer. In term of cropping system, all cropping systems perform well under different management practices. There was no much variation recorded with micronutrient.

Calicut: Higher available iron and copper (36.9 & 13.7 ppm) were recorded under organic management practices with 100% nutrient through manure. It was at par with both management practices with iron and copper whereas, manganese was recorded higher (16.5 ppm) under integrated and higher zinc (2.6 ppm) under inorganic nutrient management practices. Manganese was at par with other management practices and zinc was 23 & 26.9% higher than integrated and organic nutrient management practicely. In term of cropping systems, black pepper-fellow perform well with iron and zinc whereas, rajatha variety perform better with copper and turmeric (partibha) found good result with manganese.

Dharwad: Higher available iron was recorded (9.58 ppm) under inorganic management practices and it was at par with organic and integrated nutrient management. Higher available manganese (13.2 ppm) was recorded under organic nutrient management with 100% nutrient through manure and it was also at par with inorganic and integrated nutrient t management. Higher available zinc (0.90 ppm) recorded under inorganic nutrient management and at par with other management practices. Higher available copper recorded higher (1.51 ppm) under integrated nutrient management with 50% organic + 50% inorganic nutrient through manure and it was also at par with other management practices. In term of cropping systems, there was no much variation was recorded among different micro nutrients.

Pantnagar: Available micro nutrient were evaluated. Higher available iron, zinc and copper (56.8, 1.37 and 3.73) ppm were recorded higher under organic management with 100% nutrient through manure. These were found (42.7 & 9.5%), (29.2 & 26.3%) and (28.2 & 10.9%) higher than integrated and inorganic management practice respectively whereas, higher soil available manganese (16.1 ppm) was recorded

Management practice			Soil Av	Soil Available Iron	Iron (ppm)				Soil 4	Available	Soil Available Manganese (ppm)	(mqq) i		
	Organic management	nic ement	Inorganic management	anic ∋ment	Integrated managemer	t l	Mean	Organic management	anic ement	Inorç manag	Inorganic management	Integ manag	Integrated management	Mean
	100% 75% organic organic +2 innovativ inputs	a a	100% State inorganic recomm- farmer's package	State recomm- endation/ farmer's package	50% organic + 50% inorganic	75% organic + 25% inorganic		100% organic ii	75% organic +2 innovative inputs	75% 100% organic inorganic +2 nnovative inputs	State recomm- endation/ farmer's package	50% organic + 50% inorganic	75% organic + 25% inorganic	
Bajaura Tomato-cauliflower-	8.67	7.60	685	7.20	10.80	8 Z0	8.30	6.10	4 68	5 20	5 06	86 6	7.56	6 43
french bean	0.0	00.7												
Iomato-caulitiower Black gram-cauliflower- summer sculash	8.00 6.34	7.10 5.30	6.87	8.30 7.07	10.60	8.65 8.65	8.27 7.47	67.c 4.68	4.34 3.97	6.05 4.46	00.9	8.78 10.20	6.8U 8.45	6.29 6.29
Lady finger-pea Mean	10.40 8.35	8.90 7.23	6.50 6.81	6.06 7.16	10.80 10.73	8.55 8.61	8.54	6.34 5.59	4.89 4.47	7.10 5.70	5.30 5.54	9.23 9.55	7.80 7.65	6.78
Calicut														
Varada	35.3	33.3	34.6		34.6		34.5	8.10	6.10	8.20		6.50		7.2
Rejatha Mahima	41.6 39.3	21.6 37.0	38.6 36.3		38.3 37.6		35.0 37.6	11.00 11.80	10.50 9.30	9.50 11.60		8.80 7.70		10.0 10.1
Turmeric (Alleppey	29.3	29.3	28.6		28.3		28.9	19.00	17.00	22.00		20.00		19.5
Turmeric Prathibha)	31.0	32.0	30.0		30.0		30.8	19.60	28.60	30.60		30.30		27.3
Blackpepper-tellow Mean	45.0 36.9	30.6	46.U 35.7		45.0 35.6		45.3	22.00 15.3	14.3	17.00 16.5		19.00 15.4		19.3
Dharwad														
Cowpea-safflower	9.52	9.65	9.53	9.40	9.53	9.46	9.52	13.3	12.3	12.7	12.7	12.5	13.3	12.8
Prigeon pea (sole) Sorghum-greengram	0.93 9.56	9.01 9.41	9.54 9.54	9.04 9.44	9.30 9.34	9.56 9.56	9.40 9.48	13.1	13.3	12.4	12.8	12.9	12.0	12.7
Groundnut + hybrid	9.73	9.46	9.39	9.23	9.58	9.69	9.51	13.1	12.2	12.9	12.3	13.4	13.6	12.9
Maize-chickpea	9.57	9.47	9.54	9.46	9.58	9.56	9.53	13.1	12.6	12.6	12.7	13.0	12.7	12.8
Mean	9.46	9.52	9.50	9.43	9.48	9.58		13.2	12.7	12.7	12.6	12.9	12.9	
Pantnagar														
Rice-wheat - <i>sesbania</i> Rice-chickpea +	48.9 55.4	47.6 53.2	35.9 34.7	32.7 30.7	43.3 49.6	42.5 48.8	41.8 45.4	12.3 10.4	11.5 10.3	9.0 9.1	8.7 7.9	12.6 17.5	12.0 16.9	11.0 12.0
coriander- <i>sesbania</i> Rice-vegetable pea+	60.1	58.6	29.8	28.9	58.2	56.9	48.8	15.7	12.3	9.5	9.0	20.8	19.3	14.4
coriander- <i>sesbania</i> Rice-potato- <i>sesbania</i>	62.8	60.8	34.6	33.3	56.6	55.0	50.5	14.5	11.9	10.3	0.0 0	13.4	12.3	12.0
Mean	56.8	55.1	33.7	31.4	51.9	50.8		13.2	11.5	9.5	8.8	16.1	15.1	

Management practice			Ň	_	(ppm) Cooper (p	5				Coope	Cooper (ppm)	bm) (md		
1	Org. manag	Organic management	Inorganic management	anic ement	Integrated management		Mean	Organic management	anic ement	Inorganic management	anic ement	Integrated management	rated ement	Mean
	100% organic i	100% 75% organic organic +2 innovative inputs	100% State inorganic recomm- endation/ farmer's package	State recomm- endation/ farmer's package	50% organic + 50% inorganic	75% organic + 25% inorganic		100% organic ii	75% organic i +2 innovative inputs	100% inorganic	State recomm- endation/ farmer's package	50% organic + 50% inorganic	75% organic + 25% inorganic	
Bajaura Tomato-cauliflower-	2.80	2.08	1.96	1.08	2.80	2.65	2.23	1.24	1.14	0.85	0.96	1.30	1.21	1.12
french bean Tomato-cauliflower Black gram-cauliflower-	2.90 2.68	2.68 2.34	1.75 2.01	1.00 1.45	2.86 2.60	2.70 2.35	2.32 2.24	1.10 1.10	0.92 0.92	0.88 0.80	1.00 0.92	1.56 1.60	1.34 1.40	1.13 1.12
summer squasn Lady finger-pea Mean Calicut	2.10 2.80	1.85 2.38	1.90	1.06 3.36	2.50 3.11	2.24 2.80	1.94	1.14	1.01	0.80 0.83	0.92 0.95	1.55 1.50	1.42	1.14
Varada Rejatha Mahima Turmeric (Alleppey	1.20 1.90 1.70 1.20	1.30 1.70 1.70 1.30	1.30 1.50 1.40 1.10		2.10 2.10 1.90 1.60		1.5 1.8 1.7	16.00 16.30 15.60 10.20	19.60 16.00 15.60 8.40	14.00 20.00 18.30 9.30		16.00 18.30 18.60 11.30		16.4 17.7 17.0 9.8
supreme <i>)</i> Turmeric Prathibha) Blackpepper-fellow Mean Dharwad	1.60 6.30 2.3	1.50	1.20 5.40 2.0		1.20 6.80 2.6		1.4 6.2	12.40 7.90 13.1	8.90 13.7	7.30 7.30 12.7		7.20 7.30 13.1		9.0 7.5
Cowpea-safflower Pigeon pea (sole) Sorghum-greengram Groundnut + hybrid	0.89 0.86 0.77 0.88	0.89 0.82 0.88 0.86	0.89 0.87 0.83 0.83	0.88 0.84 0.85 0.85	0.88 0.86 0.88 0.92	0.90 0.91 0.88 0.88	0.89 0.86 0.86 0.87	1.32 1.41 1.42 1.56	1.50 1.43 1.34 1.51	1.49 1.49 1.55	1.46 1.47 1.43 1.48	1.49 1.50 1.48	1.49 1.53 1.46 1.37	1.46 1.47 1.45 1.48
cotton (2:1) Maize-chickpea Mean Pantnagar	0.87 0.85	0.86 0.86	0.88 0.86	0.81 0.85	0.86 0.88	0.87 0.90	0.86	1.41 1.42	1.44 1.44	1.53 1.51	1.53 1.47	1.41 1.48	1.48 1.47	1.47
Rice-wheat-ses <i>bania</i> Rice-chickpea + coriander-seshania	1.36 1.42	1.32 1.39	0.96 1.08	1.09 1.10	0.96 1.08	0.94 1.03	1.11	3.69 3.74	3.58 3.65	2.40 2.58	2.35 2.52	3.63 3.46	3.52 3.28	3.20 3.21
Rice-vegetable pea+ coriander-sesbania Rice-potato-sesbania	1.38 1.30	1.35 1.29	0.98 0.80	0.96 0.78	1.13 0.98	1.10 0.93	1.15	3.58 3.58 2.72	3.85 3.49 2.64	2.95 2.38 2.58	3.90 2.30	3.40 3.08	3.32 2.92	3.55 2.96
Mean	1.37	1.34	0.90	0.98	1.04	00.1		3./3	3.04	QC.7	7.11	3.39	3.20	

Table 7.1.9. Influence of methods of organic, inorganic and integrated package on soil available micronutrients at the end of cropping cycle

under inorganic nutrient management with 100% nutrient supply. It was 23.3 and 43.2% higher than organic and integrated management practices respectively. In term of cropping system, overall well performance found under rice-vegetable pea+coriander-sesbania with all micronutrients.

Influence of organic management package with reduced dose of organic manures, integrated and inorganic management packages on N, P and K uptake (Table 7.1.10 to 7.1.12)

Seven centres estimated uptake of nutrient for all the crops evaluated under different management practices.

Bajaura: Different vegetable crops in cropping systems were evaluated. Tomato recorded higher N uptake (3.0) under integrated nutrient management. Cauliflower recorded higher N uptake under inorganic nutrient management with 100% nutrient through manure. Frenchbean recorded higher N uptake under integrated nutrient management with state recommendation. Black gram recorded higher N uptake under integrated nutrient management. Summer squash also found higher N uptake under inorganic with state recommendation. Lady finger (2.01) under integrated and pea (3.45) under inorganic recorded higher N uptake. Tomato, cauliflower, frenchbean, black gram, summer squash, lady finger and pea were recorded higher P uptake (02.28, 0.55, 0.20, 0.27, 0.28, 0.29 and 0.35%) respectively under inorganic nutrient management with state recommendation and frenchbean was at par with integrated nutrient management practices (50% organic+ 50% inorganic). Crops Cauliflower, frenchbean, lady finger and pea recorded higher K uptake (2.60, 2.01, 2.12 & 0.95) respectively under inorganic nutrient management and no much variation was found among all management practices. Tomato and summer squash recorded higher K uptake (2.35 & 2.20 %) respectively under integrated nutrient management and both was at par with inorganic nutrient management practices.

Calicut: NPK were estimated for different varieties of ginger, turmeric and blackpepper were evaluated. Organic nutrient package (1.60%) performs well over inorganic (1.36%) and integrated (1.42%). it was found 15 and 11.3% higher than inorganic and integrated nutrient management respectively. In term of variety performance, turmeric (alleppysupreame) recorded higher N uptake (1.65%) and it was 16.4, 15.15, and 19.4 % higher than varada, rejatha and mahima whereas, it was found at par with turmeric (partibha). Higher P uptake % were recorded under organic nutrient management practice with 100% nutrient through manure and it was (20.5 & 13.6 %) higher than inorganic and integrated nutrient management respectively. In term of variety performance, turmeric alleppy (0.53%) recorded higher P uptake and it was 43.4, 41.5 and 39.6 % higher than varada, rejatha and mahima whereas it was at par with turmeric (partibha). Higher K uptake (1.6%) were recorded under organic nutrient management with 100% organic nutrient through manure and it was (16.3 & 19.4%) higher than inorganic and integrated nutrient management respectively. In term of variety performance, turmeric (partibha). Higher K uptake (1.6%) were recorded under organic nutrient management with 100% organic nutrient through manure and it was (16.3 & 19.4%) higher than inorganic and integrated nutrient management respectively. In term of variety performance, turmeric (partibha) 1.75% performs well as compare with other varieties. It was found (48, 32 & 46.9%) higher than varada, rejatha and mahima whereas it was found at par with turmeric (alleppy).

Influence of organic, inorganic and integrated nutrient management on iron, manganese, zinc and copper (mg ha⁻¹) uptake at Bajaura (Table 7.1.13)

Bajaura: Different vegetable crops were evaluated at Bajaura. Tomato, frenchbean, summer squash, black gram, lady finger and pea were recorded higher iron uptake (54.0, 118.0, 49, 118.0, 45 and 40.0) mg ha⁻¹ respectively under integrated nutrient management with 75% organic + 25% nutrient. Cauliflower

Table 7.1.10. Influence of organic, inorganic and integr	e of ol	rganic, i	norganic	and in	tegrate	ated package on N uptake (%) of crops and cropping systems at various locations	onNu	uptake ((%) of cro	ps and	croppi	ng systen	ıs at va	rious	ocations			
Cropping system/		0	Organic management	anagen	lent			Ino	Inorganic management	Inagem	ent			Inte	Integrated management	anagei	ment	
Management package		100% organic	anic	75% 2 inno	75% organic + 2 innovative inputs	ic + nputs	10(100% inorganic		State re farm	ate recommendatic farmer's package	State recommendation/ farmer's package	50	50% organic + 50% inorganic	nic + Janic	75'	75% organic + 25% inorganic	nic + anic
_	Kharit	Rabi	Kharif Rabi Summer	Kharif	Rabi	Kharif Rabi Summer	Kharif	Rabi S	Kharif Rabi Summer	Kharif	Rabi	Rabi Summer Kharif Rabi Summer Kharif Rabi	Kharif	Rabi S	ummer	Kharif	Rabi S	Summer
Bajaura																		
Tomato-cauliflower- french bean	2.00	2.00 2.79	2.28	1.82 2.74	2.74	2.25	2.12 2.98	2.98	2.45	2.25	3.00	2.52	2.18	2.90	2.43	1.96		
Cauliflower-tomato	2.82	2.02		2.76 1.98	1.98			2.92	2.12		2.99	2.20		3.00	2.22	2.41	2.95	2.18
Black gram-cauliflo- wer-summer squash	2.24	2.79	1.78	2.10 2.85	2.85	1.74	2.36	2.96	1.82	2.40	3.00	1.85	2.41	2.95	1.82	2.34	2.92	1.79
Lady's finger-pea	1.86	3.38		1.78 3.36	3.36		1.93 3.42	3.42		1.98	3.45		2.01 3.40	3.40		1.96	3.39	
	Organic 100%	U		Organic 75%	0	-	Inorganic	<u>.</u>				Ē	Integrated	σ				Mean
Varada	1.50			1.40			1.30						1.30					1.38
Rejatha	1.50			1.40			1.30						1.40					1.40
Mahima	1.50			1.40			1.10						1.30					1.33
Turmeric (Alleppey Supreme)	1.80			1.70			1.50						1.60					1.65
Turmeric (Prathibha) 1.70	1.70			1.70			1.60						1.50					1.63
Blackpepper-fellow																		
Mean	1.60			1.52			1.36						1.42					

Network Project on Organic Farming

		ואמיייני	20.04					· · · · · · ·			2	2						
Cropping system/		ō	Organic management	Inagem	ent			Inor	Inorganic management	nagem	ent			Integ	Integrated management	nanage	ment	
Management package		100% organic	anic	75% 2 inno	75% organic + 2 innovative inputs	ic + nputs	100	100% inorganic		State re farm	ate recommendatic farmer's package	State recommendation/ farmer's package	20,	50% organic + 50% inorganic	nic + anic	75	75% organic + 25% inorganic	nic + anic
	Kharif	Rabi S	Kharif Rabi Summer Kharif Rabi	Kharif		Summer	Kharif Rabi		Summer	Kharif	Rabi	Kharif Rabi Summer	Kharif	Rabi S	Kharif Rabi Summer Kharif Rabi Summer	Kharif	Rabi S	Summer
Bajaura																		
Tomato-cauliflo- wer-french bean	0.22 0.49		0.18	0.19 0.45	0.45	0.15	0.27 0	0.54	0.18	0.28	0.55	0.20	0.25	0.50	0.20	0.24	0.48	0.16
Cauliflower-tomato	0.45	0.25		0.44 0.20	0.20		0.52 0	0.25		0.54	0.27		0.50	0.27		0.46	0.24	
Black gram-cauliflo- wer-summer squash	0.25	0.50	0.25	0.20	0.48	0.20	0.22 0	0.55	0.25	0.27	0.55	0.28	0.23	0.52	0.24	0.26	0.50	0.21
Lady's finger-pea	0.18	0.32		0.12 0.28	0.28		0.25 0.34	0.34		0.29	0.35		0.20 0.34	0.34		0.24	0.32	
Calicut	Organic 100%		Ŭ	Organic 75%		-	Inorganic					-	Integrated	75				Mean
Varada	0.32			0.32			0.25						0.30					0.30
Rejatha	0.36			0.32			0.25						0.29					0.31
Mahima	0.36			0.37			0.24						0.30					0.32
Turmeric (Alleppey Supreme)	0.63			0.52			0.49						0.49					0.53
Turmeric (Prathibha) 0.51	0.51			0.57			0.50						0.50					0.52
Blackpepper-fellow																		
Mean	0.44			0.42			0.35						0.38					

Table 7.1.11. Influence of inorganic, inorganic and integrated on P uptake (%) of crops at different locations

Table 7.1.12. Influence of inorganic, inorganic and integrated on K uptake (%) of crops at various locations	e of in	organic	, inorgan	ic and i	ntegra	ted on K u	ptake (%) of	crops at va	arious l	ocation	S						
Cropping system/		0	Organic management	anagem	lent		-	Inorganic management	anagen	nent			Integ	Integrated management	anager	nent	
Management package		100% organic	Janic	75% 2 inno	75% organic + 2 innovative inputs	ic + nputs	100% inorganic	organic	State re farm	ate recommendatio farmer's package	State recommendation/ farmer's package	50	50% organic + 50% inorganic	anic +	75°, 25°,	75% organic + 25% inorganic	iic + anic
	Kharif	Rabi	Kharif Rabi Summer	Kharif	Rabi	Kharif Rabi Summer	Kharif Rabi	Summer	Kharif		Rabi Summer	Kharif	Rabi S	Kharif Rabi Summer Kharif Rabi	Kharif		Summer
Bajaura																	
Tomato-cauliflower- 2.20 2.53 1.97 french bean	2.20	2.53	1.97	2.19 2.50	2.50	1.96	2.28 2.55	1.99	2.31	2.58	2.01	2.35	2.56	2.01	2.29	2.55	1.99
Cauliflower-tomato		2.55	2.24		2.52	2.20	2.55	2.30		2.60	2.32		2.59	2.35		2.57	2.33
Black gram-cauliflo- wer-summer squash	2.10	2.50	2.12	2.03 2.54	2.54	2.10	2.12 2.57	2.15	2.15	2.60	2.18	2.14	2.55	2.20	2.12	2.56	2.08
Lady's finger-pea	2.10	2.10 0.84		2.07 0.83	0.83		2.06 0.95		2.12	0.92		2.11 0.90	06.0		2.06	0.88	
Calicut	Organic 100%	U		Organic 75%		-	Inorganic					Integrated	75				Mean
Varada	1.50			06.0			06.0					0.89					0.91
Rejatha	1.50			0.92			0.93					1.82					1.19
Mahima	1.50			0.97			0.88					0.94					0.93
Turmeric (Alleppey Supreme)	1.80			1.50			1.80					1.50					1.65
Turmeric (Prathibha) 1.70	1.70			1.80			2.20					1.30					1.75
Blackpepper-fellow																	
Mean	1.60			1.22			1.34					1.29					

Cropping system/		0	Organic management	anagem	lent			Inol	Inorganic management	anagem	ent			Inte	Integrated management	nanage	ment	
Management package		100% organic	ganic	75% 2 inno	75% organic + 2 innovative inputs	iic + inputs	100	100% inorganic	ganic	State re farm	tte recommendatio farmer's package	State recommendation/ farmer's package	50	50% organic + 50% inorganic	nic + Janic	75 25	75% organic + 25% inorganic	nic + Janic
	Kharif		Rabi Summer	Kharif Rabi		Summer	Kharif Rabi		Summer	Kharif	Rabi	Summer	Kharif	Rabi S	Kharif Rabi Summer Kharif	Kharif	Rabi	Summer
Iron																		
Tomato-cauliflo-	52.0	50.0	107.0	50.0	49.0	104.0	45.0	42.0	100.0	46.0	48.0	102.0	50.0	52.0	112.0	54.0	53.0	118.0
	47.0 110.0	50.0 52.0	45.0	48.0 108.0	49.0 49.0	42.0	42.0	44.0 43.0	40.0	43.0 104.0	44.0 44.0	42.0	54.0 116.0	52.0 50.0	46.0	50.0 118.0	50.0 52.0	49.0
wer-summer squash Lady's finger-pea	41.0	32.0		35.0	30.0		31.0	29.0		33.0	31.0		43.0	40.0		45.0	38.0	
Manganese																		
Tomato-cauliflo-	22.0	22.0	18.0	24.0	18.0	17.0	18.0	14.0	14.0	20.0	16.0	14.0	22.0	25.0	19.0	23.0	27.0	20.0
wer-trench bean Cauliflower-tomato Black gram-cauliflo-	16.0 20.0	23.0 21.0	0.02	16.0 18.0	24.0 20.0	17.0	13.0	17.0 12.0	13.0	15.0 14.0	19.0 16.0	15.0	26.0 20.0	23.0 24.0	0.61	28.0 19.0	23.0 28.0	20.0
wer-summer squash Lady's finger-pea	15.0	21.0		14.0	20.0			14.0		12.0	16.0		16.0	22.0		18.0	20.0	
Zinc																		
Tomato-cauliflo-	18.0	20.0	28.0	16.0	18.0	27.0	11.0	13.0	20.0	13.0	14.0	22.0	19.0	21.0	30.0	19.0	20.0	29.0
wer-trench bean Cauliflower-tomato Black gram-cauliflo-	18.0 30.0	18.0 19.0	18.0	15.0 28.0	17.0 17.0	17.0	12.0 20.0	11.0 12.0	10.0	14.0 23.0	14.0 14.0	13.0	20.0 32.0	18.0 18.0	19.0	20.0 29.0	19.0 20.0	18.0
wer-summer squasn Lady's finger-pea	14.0	8.0		12.0	7.5			8.0	5.0		10.0	6.5	14.0	7.8		16.0	8.0	
Copper																		
omato-cauliflo-	7.8	11.2	11.4	7.3	11.5	10.9	4.0	6.4	6.0	5.3	7.3	8.3	7.4	11.5	11.9	7.6	11.8	12.0
Wei-heildribean Cauliflower-tomato Black gram-cauliflo-	11.8 11.8	7.5 11.3	6.5	11.5 11.2	7.2 11.0	6.0	7.7 6.2	5.2 7.5	3.8	8.5 7.5	6.4 8.4	4.7	11.6 12.3	7.7 11.2	6.8	10.2 12.7	7.8 11.6	6.9
wer-summer squasn Lady's finger-pea	6.2	18.0		6.0	16.0	3.2	3.2	10.0		4.1	11.0		6.4	17.0		6.5	19.0	

Network Project on Organic Farming

recorded higher iron under integrated nutrient management with 50% organic+ 50% inorganic nutrient management. Couliflower, frenchbean, lady finger recorded higher Manganese uptake (28, 20, 18 mg ha⁻¹) under integrated nutrient management with 75% organic + 25% inorganic and pea, black gram (18 and 22 mg ha⁻¹) with 50% organic + 50% inorganic. French bean, summer squash and pea found at par with organic management practices. Whereas black gram and tomato (24 & 20 mg ha⁻¹) were recorded higher Mn under organic nutrient management with 100% organic and 75% organic nutrient through manure respectively. Tomato found at par with integrated nutrient management (75% organic+ 25% inorganic). Higher zinc was found among all the evaluated crops under integrated nutrient management. Tomato, cauliflower, frenchbean, black gram and summer squash recorded higher zinc (19.0, 21.0, 30.0, 32.0 and 1.9 mg ha⁻¹) respectively under integrated nutrient management practices with 50% organic + 50% inorganic. Whereas lady finger and pea (16.0 & 8.0 mg ha⁻¹) recorded higher zinc under integrated nutrient management with 75% organic+25% inorganic nutrient through manure. Tomato, cauliflower, frenchbean, black gram, summer squash, lady finger and pea were recorded higher Copper uptake (7.8, 11.8, 12.0, 12.7, 6.9, 6.5, and 19.0 mg ha⁻¹) respectively under integrated nutrient management with 75% organic+ 25% inorganic practices. Tomato and cauliflower were at par with organic nutrient management with 100% nutrient through manure. Summer squash was at par with integrated nutrient (50% organic+ 50% inorganic). Lady finger and pea were also at par with organic nutrient management with 100% nutrient through manure.

Soil micronutrients (zinc, copper, iron and manganese) availability of ginger at Calicut (Table 7.1.14).

Higher zinc availability was recorded under integrated nutrient management. It was found higher (23 & 26.9%) than inorganic and organic management practices. In term of variety performance, black pepper performs batter as compare with other varieties. Higher copper (13.7%) was recorded under organic nutrient management practices with 75% nutrient through manure. It was found 7% higher than inorganic management and at par with integrated nutrient management. In term of Variety performance, ginger (Rejatha) performs well compare to other varieties. Higher iron (30.9%) was recorded under organic nutrient management practices with 100% nutrient through manure. It was found at par with inorganic and integrated nutrient management. In term of crop performance, black pepper recorded good result (45.3%) as compare with other varieties. Higher manganese (16.5%) was recorded under inorganic nutrient management and it was (6.6 & 10.3%) higher than integrated and organic nutrient management. In term of crop variety, turmeric (partibha) found higher manganese (27.3%) as compare with other crops varieties.

Rhizosphere microbial (bacteria and fungi microorganism) population in soil as influenced by the different nutrient management practices and cropping systems are reported only Jabalpur and Dharwad centres. (Table 7.1.15 to 7.1.16)

Jabalpur: Higher bacteria (55.4x10⁶ CFU/g) were recorded under organic nutrient management with 100% organic nutrient through manure. It was found (33.4 & 22.2 %) higher than inorganic and integrated nutrient management. In term of cropping system, basmati rice- vegetable pea-sorghum recorded higher bacteria (47.9x10⁶ CFU/g).Higher fungi were recorded (47.3x10⁶ CFU/g) under organic nutrient management with 100% organic nutrient through manure. It was found (35.5 & 17.8 %) higher than inorganic and integrated nutrient management practices. In term of cropping systems, basmati rice-wheat-green manure recorded higher fungi (40.7x10⁶ CFU/g) higher as compare with other cropping systems.Higher *actinomycetes* (14.6x10⁶ CFU/g) were recorded higher under organic nutrient management practice with 100% organic

Table 7.1.14. Effect of different management systems on soil micro nutrient (zinc, copper, iron and manganese) availability of ginger at Calicut	t managem	ent systems	on soil micro	onutrient (zind	c, copper, iror	า and mangane	se) availabil	ity of ginger :	at Calicut	
	Organic 100%	Organic 75%	Inorganic	Integrated	Mean	Organic 100%	Organic 75%	Inorganic	Integrated	Mean
			Zn					C		
Varada	1.20	1.30	1.30	2.10	1.5	16.00	19.60	14.00	16.00	16.4
Rejatha	1.90	1.70	1.50	2.10	1.8	16.30	16.00	20.00	18.30	17.7
Mahima	1.70	1.70	1.40	1.90	1.7	15.60	15.60	18.30	18.60	17.0
Turmeric (Alleppey Supreme)	1.20	1.30	1.10	1.60	1.3	10.20	8.40	9.30	11.30	9.8
Turmeric Prathibha)	1.60	1.50	1.20	1.20	1.4	12.40	8.90	7.30	7.20	9.0
Black Pepper-Fellow	6.30		5.40	6.80	6.2	7.90		7.30	7.30	7.5
Mean	2.3	1.5	2.0	2.6		13.1	13.7	12.7	13.1	
			Fe					Mn		
Varada	35.3	33.3	34.6	34.6	34.5	8.10	6.10	8.20	6.50	7.2
Rejatha	41.6	21.6	38.6	38.3	35.0	11.00	10.50	9.50	8.80	10.0
Mahima	39.3	37.0	36.3	37.6	37.6	11.80	9.30	11.60	7.70	10.1
Turmeric (Alleppey Supreme)	29.3	29.3	28.6	28.3	28.9	19.00	17.00	22.00	20.00	19.5
Turmeric Prathibha)	31.0	32.0	30.0	30.0	30.8	19.60	28.60	30.60	30.30	27.3
Blackpepper-fellow	45.0		46.0	45.0	45.3	22.00		17.00	19.00	19.3
Mean	36.9	30.6	35.7	35.6		15.3	14.3	16.5	15.4	

÷ ij č ÷ 4 +ilideli . 11 4410

Table 7.1.15. Rhizosphre microbial (Bacteria and Fungi micro-organisms) population in soil as influenced by the different nutrient management practices and cropping systems

Management practice				Bacteria (x10 ⁶ CFU/g)	10° CFU/g)						Fungi (x10 ⁶ CFU/g)	CFU/g)		
	Organic management	nic ∍ment	Inorganic management	anic ement	Integrated management		Mean	Organic management	mic ement	Inorganic management	anic ement	Integ manag	Integrated management	Mean
	100% 75% organic organic +2 innovativ inputs	ن	100% inorganic	100% State inorganic recomm- endation/ farmer's package	50% organic + 50% inorganic	75% organic + 25% inorganic		100% organic ir	75% organic i +2 innovative inputs	100% inorganic	State recomm- endation/ farmer's package	50% organic + 50% inorganic	75% organic + 25% inorganic	
Dharwad														
Cowpea-safflower	8.24	8.12	7.49	7.37	7.56	7.57	7.73	4.63	4.39	4.16	4.55	4.48	4.30	4.42
Pigeonpea	7.59	7.64	7.76	7.77	7.69	7.62	7.68	4.86	4.39	4.60	4.56	4.59	4.00	4.50
Sorghum-greengram	7.82	7.67	7.79	7.60	8.11	7.68	7.78	4.83	4.30	4.70	4.39	4.60	4.46	4.55
Groundnut + hybrid	7.80	7.78	7.00	7.75	7.19	7.10	7.44	4.44	4.33	4.33	4.74	4.00	4.39	4.37
Maize-chickpea	6.92	7.26	7.45	7.78	7.29	7.34	7.34	4.39	4.30	4.64	4.44	4.60	4.82	4.53
Mean	7.67	7.69	7.50	7.65	7.57	7.46		4.63	4.34	4.49	4.54	4.45	4.39	
Jabalpur														
Basmati rice-wheat- Green manure	56.3	56.0	39.1	38.5	44.9	45.1	46.6	48.3	48.0	32.4	30.1	42.3	43.0	40.7
Basmati rice – chickpea - Maize fodder	52.7	51.5	33.9	33.0	39.9	40.5	41.9	46.2	45.9	30.4	29.2	35.3	36.1	37.2
Basmati rice – berseem (fodder and seed)	52.5	52.2	36.1	35.8	42.8	43.2	43.7	47.5	47.0	30.1	30.0	39.7	40.0	39.1
Basmati rice – vegetable pea- sordhum (fodder)	60.3	0.09	39.4	39.1	43.9	44.5	47.9	47.1	47.0	31.3	31.1	37.4	37.5	38.6
Mean	55.4	54.9	37.1	36.6	42.9	43.3		47.3	47.0	31.0	30.1	38.7	39.1	

soil as influenced by the different nutrient nonulation in organisms) micro solubilizing **nhosnhate** 200 0000 microbial (Actinom Table 7.1.16 Rhizosphre

Management practice			Ac	tinomycetes	Actinomycetes (x10 ⁶ CFU/g)						PSB (x10°CFU/g)	:FU/g)		
	Organic management	anic ement	Inorganic management	anic ement	Integrated management		Mean	Organic management	anic ement	Inorganic management	anic ement	Integ manaç	Integrated management	Mean
	100% 75% organic organic +2 innovativ	c)	100% inorganic	100% State inorganic recomm- endation/ farmer's package	50% organic + 50% inorganic	75% organic + 25% inorganic		100% organic in	75% organic + 2 innovative inputs	100% inorganic	State recomm- endation/ farmer's package	50% organic + 50% inorganic	75% organic + 25% inorganic	
Dharwad														
Cowpea-safflower	4.73	4.43	4.42	4.61	4.66	4.43	4.55	5.95	5.93	5.65	5.91	5.90	5.74	5.85
Pigeonpea	4.69	4.42	4.32	4.11	4.75	4.60	4.48	5.59	5.26	5.16	5.30	5.83	5.64	5.46
Sorghum-greengram	4.34	4.17	4.32	4.11	4.16	4.23	4.22	5.67	5.16	5.39	5.26	5.30	5.39	5.36
Groundnut + hybrid	4.52	4.35	3.96	4.23	4.15	3.95	4.19	5.46	5.46	5.16	5.79	5.64	5.39	5.48
cotton (2:1) Maize-chicknea	4.02	4.00	4.37	4.50	4.08	4 23	4 20	5.51	5.39	5 46	5.51	5.39	5.26	5.42
Mean	4.46	4.27	4.28	4.31	4.36	4.29		5.64	5.44	5.36	5.55	5.61	5.48	
Jabalpur														
Basmati rice –wheat- Green manure	17.4	17.1	6.4	6.1	12.2	13.0	12.0	16.9	16.5	13.4	12.5	15.5	16.1	15.2
Basmati rice – chickpea - Maize fodder	14.2	14.0	5.8	5.2	10.7	11.1	10.2	16.7	16.0	11.2	11.0	11.9	12.6	13.2
Basmati rice – berseem (fodder and seed)	14.5	14.0	5.7	5.0	10.7	11.5	10.2	16.4	16.1	9.4	9.1	11.7	12.3	12.5
Basmati rice – vegetable	12.4	12.1	5.9	5.5	11.5	11.9	9.9	15.8	15.0	10.3	9.5	13.7	14.2	13.1
Mean	14.6	14.3	5.9	5.5	11.3	11.9		16.5	15.9	11.1	10.5	13.2	13.8	

nutrient through manure. It was found (61 and 20.5%) higher than inorganic & integrated nutrient management, in term of cropping systems, higher *actinomycetes* recorded (12.0x10⁶ CFU/g) under basmati rice-wheat-green manure cropping system & it was (15, 15 and 17.5%) higher than basmati rice-chickpeamaize fodder, rice-berseem and rice-vegetable pea-sorghum respectively. Higher PSB (16.5x10⁶ CFU/g) recorded under organic nutrient management with 100% organic nutrient through manure. It was found (34.5 and 18.18%) than inorganic and integrated nutrient management respectively. In term of cropping system, basmati rice-wheat-green manure recorded (15.2x10⁶ CFU/g) higher PSB as compare with other system. It was found (13.2, 17.8 & 13.8%) higher than rest cropping system respectively. Higher *azotobacter* recorded under organic nutrient management (30.5x10⁶ CFU/g) and it was found 34.7 & 19.7% higher than inorganic and integrated nutrient management respectively. In term of cropping systems, basmati rice-wheat-green manure recorded (27.8x10⁶ CFU/g) and it was found 16.9, 17.6 and 7.9% higher than basmati rice-chickpea-maize fodder, basmati rice-berseem and basmati rice-vegetable pea-sorghum respectively.

Dharwad: Different cropping systems were evaluated. There was no much variation were found among different management practices as well as cropping systems. Higher bacterial population (7.69x10⁶ CFU/g) were recorded under organic nutrient management with 75% organic nutrient through manure and it was at par with other management practices. In term of cropping system, sorghum-greengram recorded higher bacteria (7.78x10⁶ CFU/g) and it was also at par with other cropping systems. In term of fungi similar result were recorded. Higher fungal population recorded under organic nutrient management and it was at par with other management practices. In term of cropping system, sorghum-green gram perform well and also at par with other cropping systems. Higher *actinomycetes* (4.46x10⁶ CFU/g) were recorded under organic nutrient management through manure. It was at par with other nutrient packages. In term of cropping system, there was no much variation was found. Higher *actinomycetes* recorded (4.55x10⁶ CFU/g) with cowpea-safflower cropping system and it was at par with other system. Similar trend recorded with PSB among all the cropping systems and nutrient package. Higher PSB recorded (5.64x10⁶ CFU/g) under organic nutrient management with 100% nutrient through manure and it was at par with other management package. Cowpea-safflower also recorded higher *PSB* (5.85x10⁶ CFU/g) and at par with other cropping system.

Effect of different management systems on quality aspects of organic produce

Influence of organic, inorganic and integrated package on protein, oil and methionine (%) in soybean and total chlorophyll (mg/g FW) in *rabi* crops at Bhopal (Table 7.1.17)

Organic nutrient management with 100% nutrient through manure performs well in term of protein, oil and methionine. It was found at par with inorganic and integrated nutrient management with protein, oil and methionine respectively. Higher chlorophyll was recorded under integrated nutrient management (2.24 mg/g FW) and it was found 17.4 & 8.9% higher than inorganic and integrated nutrient management respectively. In term of crops, chick pea recorded higher chlorophyll (20.7 mg/g FW) and it was found 27.6, 44 and 28% higher than wheat, mustard and linseed respectively.

Influence of organic, inorganic and integrated package on quality of ginger, turmeric and black pepper at Calicut (Table 7.1.18)

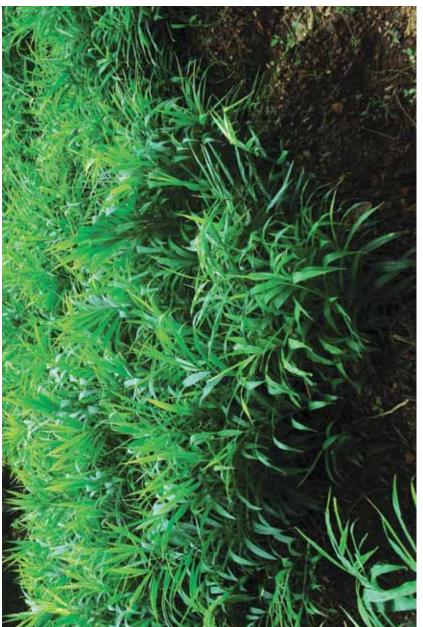
Oleoresin and oil %: Ginger variety Rejatha and Mahima recorded higher oleoresin (2.95 & 3.55%) under organic nutrient management with 100% organic nutrient through manure whereas ginger (Varada)

Management practice		rganic agement	-	ganic Jement	Integrat manager		Mean
		75% organic + 2 innovative inputs	100% inorganic	State recomm- endation/ farmer's package	50% organic∔ 50% inorganic	75% organic+ 25% inorganic	
Protein	36.7	36.3	35.6	35.5	35.8	35.9	36.0
Oil	19.1	18.8	18.6	18.2	18.7	18.7	18.7
Methionine	1.7	1.7	1.6	1.6	1.6	1.6	1.6
Total Chlorophyll (mg/g	FW)						
Wheat	1.74	2.20	1.85	1.85	2.04	2.24	1.99
Mustard	1.62	1.45	1.66	1.46	1.40	1.62	1.54
Chickpea	2.60	2.84	2.87	2.63	2.82	2.74	2.75
Linseed	2.01	1.83	1.96	2.00	2.10	1.98	1.98
Mean	1.99	2.08	1.85	1.85	2.04	2.24	

Table 7.1.17. Influence of organic, inorganic and integrated package on protein, oil and methionine (%) in soybean and
total total Chlorophyll (mg/g FW) in rabi crops at Bhopal

turmeric (Alleppey) and black pepper recorded higher oleoresin (3.67, 1.90 & 8%) under inorganic nutrient management. Turmeric (Partibha) recorded (1.30%) oleoresin under organic nutrient management with 75% nutrient management. Ginger varieties Varada, Rejatha and Mahima recorded higher oil% (1.65, 1.43 & 1.54) under organic nutrient through manure. Rejatha found no variation under different management practices. Turmeric (alleppey) found higher oil % under organic nutrient management. Turmeric (Pratibha) and black pepper found higher oil % (2.50) under integrated nutrient management.

Influence of organic, inorganic and integrated management on quality of tomato and carrot at Umiam (Table 7.1.19)


Ascorbic acid in tomato and carrot cultivated through 100% organic management at Umiam was found higher (28.3 and 41.08 mg/100 g, respectively). Higher total sugar (%) was recorded in tomato 5.30% and in carrot 6.22% under organic management. Other quality parameters *viz*. lycopene, beta carotene and total carotenoides in case of tomato and carrot respectively under organic management practices.

Influence of methods of organic, inorganic and integrated nutrient packages on economics of different crops and cropping systems (Table 7.1.20)

Bajaura: Different cropping systems and management practices was evaluated under organic production systems. Higher gross return (630329 Rs/ha) was recorded under organic nutrient management practices with 75% nutrient through manure. It was 39.6 and 12.1 % higher than inorganic and integrated nutrient management. In term of cropping systems, black gram- cauliflower-summer squash recorded higher gross return (691198 Rs/ha) and it was 7.8, 39.7 and 51.2% higher than tomato-cauliflower-frenchbean, tomato-cauliflower and lady finger-pea respectively. Lower cost of cultivation (208647 Rs/ha) recorded under inorganic nutrient management with 100% inorganic nutrient whereas Inorganic nutrient management with state recommendation recorded higher cost of cultivation (305422 Rs/ha). In term of cropping system, tomato-frenchbean-cauliflower recorded higher cost (304153 Rs/ha) and lady finger-pea recorded lower

Cropping Systems/ Oil (%) Oleoresin (%) Curcumin (%)		, 	Oil (%)	,		0	Oleoresin (%)	(%)		Cu	Curcumin (%)				Piperine (%)	
														-		
Management practice	100% 75% Orga- Orga- nic nic	75% Orga- nic	100% 75% Inorganic Integrated Orga- Orga- nic nic		100% Orga- nic	75% II Orga- nic	norganic	75% Inorganic Integrated Orga- nic	100% Orga- nic	75% I Orga- nic	100% 75% Inorganic Integrated Orga- Orga- nic nic		100% Orga- O nic	75% Inc Orga- nic	75% Inorganic Integrated Orga- nic	egrated
Ginger (Varada)	1.32	1.32 1.65	1.43	1.32	3.29	3.66	3.67	3.51								
Ginger (Rejatha)	1.43	1.43	1.43	1.43	2.95	3.04	2.88	3.90								
Ginger (Mahima)	1.43 1.54	1.54	1.32	1.32	3.55	3.49	3.00	3.29								
Turmeric (Alleppey Supreme)	2.20	1.98	1.98	2.10	1.30	1.20	1.90	1.30	5.20	5.90	5.20 6.	6.00				
Turmeric Prathibha)	1.98	2.10	2.30	2.50	1.21	1.30	1.20	1.25	4.80	5.10	4.60 5.	5.60				
Blackpepper-fellow	3.30		3.50	3.50	7.80		8.00	7.90					4.40		3.90	3.70

Cali	
at	
epper	
ğ	
acl	
ld k	
anc	
<u>i</u>	
neı	
nr	
èr, t	
nge	
gii	
ő	
ivars	
ltiv	
CU	
sno	
aric	
f vari	
ty o	
÷	
n qua	
on	
es	
cag	
ach	
it p	
nen	
Jen	
naç	
ma	
'nt	
ere	
Jiff	
of (
ect	
ö	
7.1.1	
~	1

Organic ginger production at Calicut

Nutrient sources		bic acid 100 g)	Total s %)	0	Lycopene (mg/100g)	Beta carotene (mg/100g)	Total caroteniodes (mg/g)
	Tomato	Carrot	Tomato	Carrot	Tomato	Ca	rrot
100% Organic	28.36	41.08	5.01	5.76	16.95	9.01	73.31
75% Organic	18.52	32.02	2.48	4.10	11.92	8.76	63.1
Inorganic	24.17	38.76	4.46	4.47	14.21	6.14	59.99
Integrated	26.94	40.5	5.30	6.22	16.05	8.61	68.17
SEm(+)	0.36	0.35	0.04	0.05	0.19	0.04	0.48
CD (P=0.05)	1.25	NS	0.14	0.17	0.64	0.15	1.65

Table 7.1.19. Q	Quality parameters of tomato and c	arrot under different nutrie	ent management practices at Umiam
-----------------	------------------------------------	------------------------------	-----------------------------------

cost of cultivation (186705 Rs/ha). Net return was recorded higher (396167 Rs/ha) under organic nutrient management practices. It was 68.6 and 19.6% higher than integrated and inorganic nutrient management. In term of cropping system, black gram- cauliflower-summer squash found higher net return (409665 Rs/ha) as compare with other cropping systems. Organic nutrient management with 75% nutrient through manure found higher B:C ratio (1.67). It was recorded 72.5 & 20.9% higher than integrated and inorganic nutrient practices respectively. In term of cropping system, black gram-cauliflower-summer squash found more beneficial with B:C ratio (1.48) as compare with other cropping system.

Bhopal: Higher gross return (71460 Rs/ha) was recorded under organic nutrient management and it was 31.9 and 26.2% higher than inorganic and integrated nutrient management. In term of cropping systems, soybean-linseed found higher gross return (63171 Rs/ha) and it was higher than other cropping systems. Higher cost of cultivation (27149 Rs/ha) was recorded under organic nutrient management with 75% organic nutrient through manure and it was found 11.1 & 13.2 % higher than inorganic and integrated nutrient management. In term of cropping systems, soybean-mustard (23619 Rs/ha) was recorded lower cost and it was at par with other cropping systems. Organic nutrient management recorded higher net return (48746 Rs/ha) under organic input method with 100% nutrient through manure and it was found 49.7 & 40.2% higher than integrated and inorganic nutrient management. In term of cropping systems. Organic nutrient management and it was found 49.7 & 40.2% higher than integrated and inorganic nutrient management. In term of cropping systems. Organic nutrient management. In term of cropping systems, soybean-lineseed recorded higher net return (39249 Rs/ha) as compare with other cropping systems. Organic nutrient management recorded higher net return (31.1) and it was found 35.5 and 27.4 % higher than integrated and inorganic nutrient management practices. Soybean-lineseed also perform well with higher B:C ratio (2.6).

Calicut: Organic nutrient management recorded higher gross return (593246 Rs/ha) with 100% organic nutrient through manure. It was found 29.5 & 19.7 % higher than inorganic and integrated nutrient management practices. In term of cropping system, ginger-fallow found good result with higher gross return (569109 Rs/ha). Higher cost of cultivation under (171496 Rs/ha) organic nutrient management with 100% nutrient through manure and lower found with inorganic nutrient management practices (132716 Rs/ha). In term of cropping system, turmeric-fallow found higher (160427 Rs/ha) and ginger fallow (160427 Rs/ha) found lower cost of cultivation. Higher net return recorded (421750 Rs/ha) under organic nutrient management with 100% organic nutrient through manure and it was 38.8 & 24.4% higher than integrated and inorganic nutrient management. In term of cropping systems, ginger-fellow found higher net return (423000 Rs/ha) and it was found 32.7% higher than turmeric-fellow. Higher B:C ratio recorded (2.56) under organic nutrient management with 75% organic nutrient through manure. It was found 16 & 18 %

		in in con	94111C)C								· fe Runddo			
Management practice				Gross return	returns (Rs ha ⁻¹)					Cost	Cost of cultivation (Rs ha ⁻¹)	on (Rs ha ⁻¹)		
	Organic manageme	Organic management	Inorganic management	anic ement	Integrated management		Mean	Organic management	inic ement	Inorganic management	anic ement	Integrated managemer	Integrated management	Mean
	100% organic i	100% 75% organic organic +2 innovative inputs		100% State inorganic recomm- endation/ farmer's package	50% organic + 50% inorganic	75% organic + 25% inorganic		100% organic ir	75% organic +2 innovative inputs	100% inorganic	State recomm- endation/ farmer's package	50% organic + 50% inorganic	75% organic + 25% inorganic	
Bajaura														
Tomato-cauliflower-	772306	792450	390733	521556	696022	651083	637358	302635	292135	260931	390931	283736	294549	304153
Tomato-cauliflower Black gram-cauliflower	544750 748667	544917 757000	227333 571222	276333 625900	462333 707378	458933 737022	419100 691198	205340 280260	196090 272910	168815 239788	258815 339288	187844 274203	195789 282747	202116 281533
summer squasn Lady finger-pea Mean	438600 626081	426950 630329	173150 340610	264900 422172	374450 560046	345650 548172	337283	179765 242000	175515 234163	165055 208647	232655 305422	181132 231729	186107 239798	186705
Bhopal														
Soybean- wheat Soybean- mustard Soybean- chickpea Soybean- linseed Mean	71460	69115	47629	49698	51093	54366	59570 48057 58161 63171	22714	27149	23871	24396	23614	23520	25171 23619 24130 23922
Calicut														
Ginger-fallow Turmeric-fallow Blackpepper-fellow	741496 444996	635346 446096	399031 437201		500564 451964		569109 445064	163996 178996	152846 150346	125031 140401		142564 171964		146109 160427
Coimbatore														
Cotton - maize Chillies - sunflower Beetroot - maize Cotton - maize	120845 146820 310759 192808	137042 164819 333603 211821	126321 160891 327376 204863	149709 169102 355666 224826	134816 154496 325498 204937	155021 189820 367191 237344	137292 164325 336682	88788 113478 135224 112497	79228 88908 110338 92825	51773 61868 66311 59984	76075 121356 116867 104766	65839 83382 97175 82132	76136 95683 108260 93360	72973 94113 105696
Dharwad														
Cowpea-safflower Pigeon pea (sole) Sorghum-greengram Groundrut + hybrid	61,292 67,068 1,02,958 130128	57,372 64,611 99,814 124766	53,960 59,319 91,869 114314	65,492 71,631 1,07,024 131804	63038 70659 105176 126552	59652 65907 99985 124610	60134 66533 99211 125362	18,557 17,595 24,502 38,288	18,907 17,545 25,402 39,005	18,939 16,854 25,078 35,309	22,339 19,854 29,878 41,309	20,167 17,905 26,662 38,184	20,103 18,165 27,325 36,189	19835 17986 26475 38047
Maize-chickpea Mean	40,800 74822	38,288 76970	35,152 70923	42,448 77844	40816 81248	39584 77948	39515	11,596 22108	12564 22685	11,565 21549	13,676 25411	13,078 23199	13,456 23048	12656
Karjat														
Rice-groundnut Rice-sweet corn Rice-mustard Rice – dolichos bean Mean	232677	227186	207094	190104	198049	194913	197706 299723 103693 232227							

Table 7.1.20. Influence of methods of organic, inorganic and integrated package on economics of different crops and cropping system

Network Project on Organic Farming

Network Project on Organic Farming

- - 2		5	Gross returns (Ks na ⁻¹)	(KS Na ')					Cost	Cost of cultivation (Rs ha ⁻¹)	n (Rs ha ⁻¹)		
- P	Organic management	Inorganic management	ic ent	Integrated management		Mean	Organic management	anic ement	Inorganic management	anic ∍ment	Integrated management	rated ement	Mean
	100% 75% organic organic +2 innovative inputs	100% State inorganic recomm- endation/ farmer's package		50% organic + 50% inorganic	75% organic + 25% inorganic		100% organic ii	75% organic i + 2 innovative inputs	100% inorganic	State recomm- endation/ farmer's package	50% organic + 50% inorganic	75% organic + 25% inorganic	
Modipuram													
	241550 242600	140920 1	162200	197660	206460	198565	89740	84806	51091	55991	70265	80077	71995
	153994 154806	94090 1	110410	131090	135405	129966	101940	90266	62835	67735	82163	92163	84424
rarri pop corn)- potato – s <i>esbania</i> green	582680 565725	346760 3	390380	428820	450540	460818	201333	193500	141613	150363	171249	186403	174077
corn)- bania	199601 213663	127950 1	149860	167910	167820	171134	74295	70222	38591	44191	56294	65369	58160
green manure Mean 29	294456 294199	177430 2	203213	231370	240056		116827	112059	73533	79570	94993	106003	
Pantnagar													
nia	218175 217763 239025 234488	149760 1 148920 1	146820 136770	179010 178740	180420 187800	181991 187624	69225 61265	63725 55765	61450 55620	63950 58120	65960 63520	65225 57265	64923 58593
Rice-vegetable pea+ 17	174038 174300	109560 1	104610	134010	137940	139076	63150	57650	58280	60780	65830	59150	60807
ia	215963 212213 211800 209691	103020 1 127815 1	109710 124478	159480 162810	163140 167325	160588	114225 76966	108725 71466	109725 71269	112225 73769	111682 76748	110225 72966	111135
Raipur													
Soybean-maize 24 Soybean-pea 21 Soybean-chilli 22 Soybean-onion 22 Mean 22	249208 229458 210183 192467 220952 207661 289666 276017 242502 226401	213465 2 178652 1 187675 2 247648 2 206860 2	219835 189715 201713 257416 217170	201833 174950 184408 238918 200027	202675 172108 183473 231652 197477	219413 186346 197647 256886	55123 42754 45954 44338 47042	54433 42440 45365 43886 46531	57151 45051 48613 47763 49645	60151 48051 51613 50763 52645	56137 43975 47354 46121 48397	55540 43344 46634 45209 47682	56423 44269 47589 46347
Ranchi													
Rice (Birsamati) - 12 wheat (K 0107)	127095 124846	95576 8	82771	100190	97805	104714	63361	54796	37926	34376	50610	56985	49676
	303067 296551	188011 1	168625	221818	212108	231697	90968	81460	65920	62342	78435	84694	77303
	85453 81422	52886 4	48784	62232	60469	65208	40783	35068	24665	22779	32715	36736	32124
	83369 78467	56766	49960	66372	62681	66269	40285	35523	28206	25649	34241	37250	33526
- 400)	149746 145322	98310 8	87535	112653	108266		58849	51712	39179	36287	49000	53916	
Umiam													
Rice-carrot 15 Rice-potato 16 Rice-french bean 20 Rice-tomato 25 Mean 19	156100 119100 168800 132600 203700 173300 252200 201000 195200 156500	143600 143100 163200 206100 164000		174000 185200 202900 263050 206288		148200 157425 185775 230588 230588	50518 69128 56485 55973 58026	42428 59308 51098 48828 50416	40752 58064 45488 44452 47189		46314 65942 51360 53328 54236		45003 63111 51108 50645

Management practice Net returns (Rs ha ⁻¹)			Net return	eturns (Rs ha ⁻¹)	a ⁻¹))				B:C	B:C ratio			
	Organic management	nic ament	Inorganic management	anic iment	Integrated management		Mean	Organic management	nic ement	Inorganic management	anic ement	Integrated managemei		Mean
	100% 75% organic organic +2 innovativ inputs	O U	100% State inorganic recomm- endation/ farmer's package	State recomm- endation/ farmer's package	50% organic + 50% inorganic	75% organic + 25% inorganic		100% organic ir	75% organic i +2 innovative inputs	100% inorganic	State recomm- endation/ farmer's package	50% organic + 50% inorganic	75% organic + 25% inorganic	
Bhopal														
Tomato-cauliflower- french bean	469671	500315	129802	130625	412286	356534	333206	1.55	1.71	0.5	0.33	1.45	1.21	1.13
Tomato-cauliflower Black gram-cauliflower-	339410 468407	348827 484090	58518 331434	17518 286612	274489 433175	263144 454275	216985 409665	1.65 1.67	1.78 1.77	0.35 1.38	0.07 0.84	1.46 1.58	1.34 1.61	1.11 1.48
Lady finger-pea	258835 384081	251435 396167	8095 131962	32245 116750	193318 328317	159543 308374	150579	1.44 1.58	1.43 1.67	0.05 0.57	0.14 0.35	1.07 1.39	0.86 1.25	0.83
Bhopal														
Soybean- wheat Soybean- mustard Soybean- chickpea Soybean- linseed Mean	48746	41966	23758	25302	27479	30846	34399 24438 34031 39249		2.5	2.0	2.0	2:2	2.3	2.2.2.2 2.6.4 0.4
Calicut														
Ginger-fallow Turmeric-fallow Black pepper-fellow	577500 266000	482500 295750	274000 296800		358000 280000		423000 284638	3.50 1.48	3.16 1.96	2.20 2.10		2.50 1.63		2.84 1.79
Coimbatore														
Cotton - maize Chillies - sunflower Beetroot - maize Cotton - maize	32056 33342 175534 80311	57814 75911 223265 118997	74548 99023 261065 144879	73634 47746 238799 120060	68977 71114 228322 122804	78885 94137 258931 143984	64319 70212 230986	1.36 1.29 2.30 1.65	1.73 1.85 3.02 2.20	2.44 2.60 3.33	1.97 1.39 3.04 2.13	2.05 1.85 3.35 2.42	2.04 1.98 3.39 2.47	1.93 1.83 3.34
Dharwad														
Cowpea-safflower Pigeon pea(sole) Sorghum-greengram Groundhut + hybrid	42,735 49,473 78,456 91,840	38,465 47,066 74,412 85,761	35,021 42,465 66,791 79,005	43,153 51,777 77,146 90,495	42,871 52,754 78,514 88,368	39,549 47,742 72,660 88,421	40299 48546 74663 87315	2.30 2.81 3.20 2.40	2.03 2.68 2.93 2.20	1.85 2.52 2.66 2.24	1.93 2.61 2.58 2.19	2.13 2.95 2.31 2.31	1.97 2.63 2.44 2.44	2.04 2.70 2.83 2.30
Maize-chickpea Mean	29,204 58342	25,724 54286	23,587 49374	28,772 58269	27,738 58049	26,128 54900	26859	2.52 2.65	2.05 2.38	2.04 2.26	2.10 2.28	2.12 2.49	1.94 2.33	2.13
Karjat														
Rice-groundnut Rice – sweet corn Rice – mustard Rice – dolichos bean Mean	58673 147433 -16655 43388 58210	53548 156155 -4789 48134 63262	73736 145646 19082 53647 73028	51380 135414 7980 36331 57776	50042 110203 -9930 24762 43769	38241 95040 -25363 14084 30501	54270 131649 -4946 36724	1.37 1.76 0.87 1.20 1.30	1.36 1.85 0.96 1.24	1.56 2.03 1.22 1.53	1.40 1.97 1.21 1.42	1.35 1.66 0.91 1.13 1.26	1.25 1.52 0.79 1.07 1.16	1.38 1.80 0.98 1.19

Table 7.1.20. Influence of methods of organic, inorganic and integrated package on economics of different crops and cropping system

Management practice			Net r	Net returns (Rs ha ^{.1})	'ia ⁻¹)					B:C	B:C ratio			
1	Organic management	nic ment	Inorganic management	anic ment	Integrated management		Mean	Organic management	anic ement	Inorganic management	anic ement	Integrated management	rated ement	Mean
	100% organic c in	75% corganic i + 2 innovative inputs	100% State inorganic recomm- endation/ farmer's package	State recomm- endation/ farmer's package	50% organic + 50% inorganic	75% organic + 25% inorganic		100% organic ir	75% organic + 2 innovative inputs	100% inorganic	State recomm- endation/ farmer's package	50% organic + 50% inorganic	75% organic + 25% inorganic	
Modipuram														
Basmati rice- wheat -	151810	157796	89829	106209	127395	126383	126570	3.35	3.69	3.47	3.72	3.58	3.12	3.49
Rice-barley (malt) -	52054	55102	31255	42675	48927	43242	45543	1.64	1.74	1.53	1.98	1.87	1.51	1.71
green grann Maize (pop corn)- potato –okra + ses <i>bania</i> green	381348	372226	205147	240017	257571	264137	286741	6.56	6.80	6.02	6.13	5.85	5.39	6.13
manure Maize (sweet corn)- mustard- sesbania	125306	143442	89359	105669	111616	102451	112974	3.30	4.00	4.45	4.82	3.80	3.00	3.90
green manure Mean	177630	182142	103898	123643	136377	134053		3.71	4.06	3.87	4.16	3.78	3.26	
Pantnagar														
Rice-wheat -sesbania Rice-chickpea +	148950 177760	154038 178723	88310 93300	82870 78650	113050 115220	115195 130535	117069 129031	2.15 2.90	2.42 3.20	1.44 1.68	1.30 1.35	1.71 1.81	1.77 2.28	1.80 2.21
Rice-vegetable pea-	110888	116650	51280	43830	68180	78790	78270	1.76	2.02	0.88	0.72	1.04	1.33	1.29
Rice-potato-sesbania Mean	101738 134834	103488 138224	-6705 56546	-2515 50709	47798 86062	52915 94359	49453	0.89 1.92	0.95 2.15	-0.06 0.98	-0.02 0.84	0.43 1.25	0.48 1.46	0.44
Raipur														
Soybean-maize Soybean-pea Soybean-chilli Soybean-onion Mean	194085 167429 174998 245328 195460	175025 150027 162296 232131 179870	156314 133601 139062 199885 157216	159684 141664 150100 206653 164525	145696 130975 137054 192797 151631	147135 128764 136839 186443 149795	162990 142077 150058 210540	3.52 3.92 3.81 4.19	3.22 3.54 3.58 3.90	2.74 2.97 2.86 3.19 3.19	2.65 2.95 2.91 3.15	2.60 2.98 3.16 3.16	2.65 2.97 2.93 3.17 3.17	2.90 3.22 3.16 4.56
Ranchi														
Rice (Birsamati)-wheat	63734	70050	57651	48395	49580	40820	55038	2.13	2.70	3.09	2.89	2.04	1.48	2.39
Rice (Birsamati)-potato	212099 2	215091	122091	106283	143384	127414	154394	4.15	4.68	3.58	3.34	3.32	2.63	3.62
Rice (Birsamati)-linseed	44670	46354	28222	26005	29518	23732	33084	1.79	2.21	1.86	1.86	1.47	1.01	1.70
Rice (Birsamati)-lentil	43085	42944	28560	24311	32131	25431	32744	1.86	2.12	1.91	1.78	1.77	1.24	1.78
Mean	90897	93610	59131	51249	63653	54349		2.48	2.93	2.61	2.47	2.15	1.59	
Umiam														
Rice-carrot Rice-potato Rice-french bean Rice-tomato Mean	105582 99672 147215 196227 137174	76672 73292 122202 152172 106085	102848 85036 117712 161648 116811		127686 119258 151540 209722 152052		103197 94315 134667 179942	3.09 2.44 3.61 3.41 3.41	2.81 2.24 3.39 3.14 3.14	3.52 2.46 3.59 3.55 3.55		3.76 2.81 3.95 3.86 3.86		3.30 2.49 3.64 4.55

higher than integrated and inorganic nutrient management. In term of cropping systems, ginger –fellow found higher B:C ratio (2.84). It was found 37% higher than turmeric-fellow systems.

Coimbatore: Higher gross return (237344 Rs/ha) was recorded under integrated nutrient management with 75% organic+25% inorganic nutrient. It was found 14.7 & 9.5% higher than organic and inorganic nutrient management. In term of cropping systems, beetroot-maize recorded higher gross return (366682 Rs/ha) and it was found (51.2 & 59.2%) higher than chili-sunflower and cotton-maize respectively. High cost of cultivation (112497 Rs/ha) recorded under organic nutrient management and lower cost (59984 Rs/ha) under inorganic nutrient management with 100% inorganic nutrient. In term of cropping systems, cotton-maize found more profitable response with lower cost of cultivation (72973 Rs/ha) whereas beetrootmaize found higher cost (105696 Rs/ha). Higher net return (144879 Rs/ha) was recorded under integrated nutrient management with 50% organic+50% inorganic. It was at par with inorganic nutrient management with state recommendation and 31.2% higher than organic nutrient management. In term of cropping systems, beetroot-maize found higher net return (230986 Rs/ha) and it was higher than as compare with other cropping systems. Integrated nutrient management with 50% organic+50% inorganic recorded higher B:C ratio (3.33) and it was found 27.32 and 42.9 % higher than inorganic and organic nutrient management respectively. In term of cropping systems, beetroot-maize found high and it was found 42.2 & 45.2 % higher than cotton-maize and chili-sunflower cropping systems.

Dharwad: Higher gross return (81248 Rs/ha) was recorded under integrated nutrient management with 75% organic+25% inorganic. It was found 6.6 and 8.4% higher than organic and inorganic nutrient management respectively. In term of cropping systems, groundnut-hybrid cotton recorded higher gross return (125362 Rs/ha) and it was 52, 46.9, 20.9 and 68.5 % higher than cowpea-safflower, pigeon pea, sorghum-greengram and maize-chickpea respectively. Higher (25411 Rs/ha) and lower (21549 Rs/ha) cost of cultivation were found under inorganic nutrient with state recommendation and inorganic with 100% inorganic respectively. In term of cropping systems, groundnut-hybrid cotton (38047 Rs/ha) found higher cost whereas, pigeon pea recorded lowest cost (17986 Rs/ha). Higher net return (58342 Rs/ha) was recorded under organic nutrient management. It was found at par with integrated nutrient package with 75% organic+ 25% inorganic nutrient and inorganic nutrient management respectively. In term of cropping systems. Organic nutrient management found more beneficial for farmer. Higher B:C ratio recorded (2.65) under organic nutrient management practices. It was found 14.3 & 9.1% higher than integrated and inorganic nutrient management. In term of cropping system, sorghum-greengram recorded higher B:C ratio (2.83) as compare with other cropping systems.

Karjat: Higher gross return was recorded (232677 Rs/ha) under organic nutrient management with 100% organic nutrient through manure and it was found 14.6 & 15.6 % higher than inorganic and integrated nutrient management respectively. In term of cropping systems, rice-sweet corn performs well with higher gross return (299723 Rs/ha) and it was 34.0, 65.4 & 22.5 % higher than rice-groundnut, rice-mustard and rice-dolichos bean. Integrated nutrient management recorded higher net return (73028 Rs/ha) at karjat. It was found (16.8&49.1) higher than organic and inorganic management practices respectively. In term of cropping system, rice-sweet corn recorded higher net return (131649 Rs/ha) and found more beneficial than other cropping system. Integrated nutrient management recorded higher B:C ratio (1.53) and it was found 20.9& 13.4 % higher than organic and inorganic nutrient management respectively. In term of cropping systems, rice-sweet corn found good result with (1.89) B:C ratio.

Modipuram: Organic nutrient management practices with 100% organic nutrient through manure recorded higher gross return (294456 Rs/ha). It was 35.4&19.9% higher than inorganic and integrated nutrient management respectively. Maize-potato-okra+green manure perform well with higher gross return (460818 Rs/ha) and it was 56.9, 71.8 and 62.8 % higher than basmati rice-wheat-sesbania, rice-barley-green gram and maize-mustard-sesbania respectively. Higher cost of cultivation (116827 Rs/ha) recorded under organic nutrient management and lower (73533 Rs/ha) recorded under inorganic nutrient management with 100% inorganic nutrient through manure. In term of cropping systems, maize-potato-okra+sesbania recorded higher (174077 Rs/ha) and lower (58160 Rs/ha) cost of cultivation under maize-mustard-sesbania. Higher net return (182142 Rs/ha) were recorded under organic nutrient management with 100% nutrient through manure at modipuram station. It was found 37.5& 25.8% higher than integrated and inorganic nutrient management respectively. In term of cropping system, maize-potato-okra+sesbania green manure found good result (286741 Rs/ha) as compare with other cropping system. Higher B:C ratio (4.06) recorded under integrated nutrient management and it was at par with organic nutrient management with 75% nutrient through manure and 15.4% higher than inorganic nutrient practices. In term of cropping system, maize-potato-okra+sesbania perform well with higher B:C ratio(6.13).

Pantnagar: Organic nutrient management recorded higher gross return (211800 Rs/ha) with 100% nutrient through manure. It was found 40.4 & 22.1 % higher than inorganic and integrated nutrient management. Rice-chick pea-+coriander+sesbania recorded higher gross return (187624 Rs/ha) and also at par with rice-wheat-sesbania. It was found 25 & 14.4% higher than rice-vegetable pea+coriander-sesbania and rice-potato respectively. Higher cost (76966 Rs/ha) was recorded under organic nutrient management with 100% nutrient through manure and lower (71269 Rs/ha) under inorganic nutrient management with 100% inorganic nutrient. In term of cropping systems, rice-potato-sesbania recorded higher (111135 Rs/ha) cost whereas rice-chickpea+coriander-sesbania found lowest cost (58593 Rs/ha).

Higher net return (138224 Rs/ha) was recorded under organic input package with 75% organic nutrient through manure. It was found 61.2 and 34.7% higher than integrated and inorganic nutrient management respectively. In term of cropping system rice-chickpea+coriandar-*sesbania* perform well with higher net return (129031 Rs/ha) as compare with other cropping system. Higher B:C ration was recorded under organic nutrient management practices with 75% organic nutrient through manure. It was found 57.7 and 36.9% higher than integrated and inorganic input package respectively. In term of cropping system, rice-chickpea+coriander-sesbania perform system, rice-chickpea+coriander-sesbania perform good result with higher B:C ratio(2.21) as compare with other cropping systems.

Raipur: Higher gross return (242502 Rs/ha) was recorded under nutrient management with 100% organic nutrient through manure and it was found 12.8& 18.1% higher than inorganic and integrated nutrient management respectively. In term of cropping systems, soybean-onion recorded higher (256886 Rs/ha) gross return and it was 14.6, 27.5 and 23.1 % higher than soybean-maize, soybean-pea and soybean chili respectively. Higher cost (52645 Rs/ha) was recorded under inorganic nutrient management with state recommendation and minimum cost (46531 Rs/ha) under organic nutrient management with 75% organic nutrient through manure. In term of cropping systems, soybean-pea found minimum cost of cultivation (44269 Rs/ha) and soybean-maize recorded higher (56423 Rs/ha) cost of cultivation respectively. Organic input package with 100% nutrient through manure perform well with higher net return (195460 Rs/ha). It was found (17.7 & 22.9 %) higher than integrated input package and inorganic nutrient management practice respectively. In term of cropping system, soybean-maize performs well with higher net return (162990 Rs/ha) as compare with other cropping system. Higher B:C ratio (4.19) also recorded under

organic input package with 100% organic nutrient through manure. Whereas integrated and inorganic nutrient management practices was at par with each other. In term of cropping system, soybean-onion recorded higher B:C ratio among all the systems at the experiment site.

Ranchi: Higher gross return (149746 Rs/ha) was recorded under organic nutrient management with 100% nutrient through manure. It was found 37.9 and 26.2 % higher than inorganic and integrated respectively. In term of cropping systems, rice (basmati)-potato (kufri ashoka) recorded higher gross return (231697 Rs/ha) as compare with other management practices.

Lower cost of cultivation (36287 Rs/ha) was recorded under inorganic nutrient management with state recommendation and higher cost (58849 Rs/ha) was recorded under organic nutrient management. In term of cropping systems, rice- linseed recorded lower (65208 Rs/ha) cost of cultivation and rice (basmati)-potato (kufri ashoka) recorded higher (231697 Rs/ha) cost of cultivation. Organic input package recorded higher net return (93610 Rs/ha). It was found 41&36.9% higher than integrated and inorganic nutrient package respectively. In term of cropping systems, rice basmati-potato (kufri ashoka) performs well with higher gross return (152394 Rs/ha) as compare with other cropping systems. Higher B:C ratio recorded higher 2.93 under organic input package and it was 13.3 & 36.2% higher than integrated and inorganic nutrient management respectively. In term of copping systems, rice basmati-potato perform good with higher B:C ratio (3.62) as compare with other cropping system.

Umiam: Higher gross return (206288 Rs/ha) was recorded under integrated nutrient management with 75% organic+25% inorganic nutrient through manure. It was found 14.8 and 20.5% higher than organic and inorganic nutrient practices. In term of cropping systems, rice-tomato recorded higher gross return (230588 Rs/ha) as compare with other systems. Organic nutrient management practice recorded higher cost of cultivation (58026 Rs/ha) whereas inorganic nutrient management (47189 Rs/ha) recorded lower cost of cultivation. In term of cropping systems, rice-potato recorded higher cost of cultivation (63111 Rs/ha) and rice-carrot recorded lower (45003 Rs/ha) cost of cultivation. Inorganic nutrient management with 100% organic nutrient recorded higher net return (152052 Rs/ha). It was found 20 & 25.2% higher than organic and integrated nutrient packages. In term of cropping system, rice-tomato found higher net return (179942 Rs/ha) than other cropping systems. It was found 42.6, 47.5 & 25.2% higher than rice-carrot, rice-potato and rice-frenchbean respectively. Higher B:C ratio was recorded under in organic nutrient management (3.86) and it was found 15.2 and 8.03% higher than organic & integrated nutrient management respectively. In term of cropping system, rice-tomato perform well with higher B:C ratio (4.55) as compare with other cropping systems.

7.2 Evaluation of response of different varieties of major crops for Organic Farming

Objectives

- To evaluate the response of varied duration and nutrient requiring varieties of major crops to organic production system
- To identify the suitable varieties of crops for organic management practices

Three to four groups of varieties based on crop duration, nutrient and water requirement and insect/ disease tolerance was selected for evaluation. Two major varieties grown by the farmers in the region was also included. Varieties were evaluated with 3 replications in RBD having the minimum plot size 20 m².

Year of start: 2013-14

Locations: All the 13 centres conducted the experiments.

Results

Bajaura (Table 7.2.1 to 7.2.4)

Response of varieties/hybrids of important crops in okra-cauliflower and tomato-pea-tomato system under organic management.

Six varieties of lady finger, seven varieties of cauliflower, twelve varieties of tomato and eight varieties of vegetable pea were evaluated for their performance in okra-cauliflower and tomato-pea-tomato system under organic conditions during *kharif* and *rabi* 2013-14

Okra (Table 7.2.1): Six varieties of okra were evaluated in okra-cauliflower system for their performance under organic conditions during *kharif* 2013-14. Results revealed that significant differences among the varieties for the entire traits for okra except plant population were observed. Variety P-8 recorded highest fruit yield (13364 kg/ha) followed by Indranil (12341 kg/ha) owing to more nos. of fruits/plants (15.6 and 14.3) respectively. Days taken to harvest were also recorded to be minimum (45-46 days) in Tripti, Indranil and NOL 303 and P-8. Maximum fruit length was found in Indranil and Pusamakhmali (12.1 cm) but these

Varieties/hybrids	Plant height (cm)	No of fruits/ plant	Fruits length (cm)	Days to harvest	Yield (kg/ha)
Tripti	202.0	13.5	10.6	45.0	12029
Pusamakhmali	249.1	12.0	12.1	52.7	8961
Perskin long green	239.3	7.8	9.7	55.0	8545
Indranil	194.1	14.3	12.1	45.0	12341
NOL-303	213.1	13.8	12.0	46.0	9447
P-8	219.5	15.6	11.4	45.0	13364

Table 7.2.1 Yield attributes and yield of okra (kharif) at Bajaura

were statistically at par with NOL 303. Pusamakhmali and Perskin long green attained higher plant height of 249.1 and 239.3 respectively.

Cauliflower (Table 7.2.2): PSBK-1 and KT-25 recorded higher curd weight 508.7 and 503.9 gm, numbers of curds/ha (34567.9 and 32561.7) and resulted in higher yield of 17590 and 16550 kg/ha and total biomass of 27050 and 27480 kg/ha respectively. Curd size was also higher with KT-25 (113.8 cm²).

Varieties/hybrids	Curd weight (g)	Curd size (cm²)	No of curds/ ha	Yield (kg/ha)	Total Biomass (kg/ha)
PSB-1	374.8	102.2	25462.9	9610	15020
KT-25	503.9	113.8	32561.7	16550	27480
Maharani	384.3	98.6	21913.6	8300	13920
US 178	472.9	106.7	25462.9	12080	19520
Chandra mukhi	439.0	111.3	25308.6	11190	17920
Palam uphar	285.0	64.6	22839.5	6580	10170
PSBK-1	508.7	87.4	34567.9	17590	27050

Table 7.2.2. Yield attributes and yield of Cauliflower (Rabi) at Bajaura

Tomato (Table 7.2.3): Twelve varieties of tomato were evaluated in the system for their performance under organic conditions. Maximum plant height was observed with Naveen-2000 (127.7 cm) during *kharif* followed by Manisha 114.9 cm. The tomato variety Roma recorded the highest fruit yield (6190 kg/ha) with higher no of fruits/plant (7.90). In summer the fruit yield of tomato varieties red gold and hybrid-7730 were recorded maximum (13930 and 12190 kg/ha) respectively compared to other varieties.

Varieties/hybrids	Plant h	eight (cm)	Nos. of fruits/plant		Fruit size (cm)		Days to	o harvest	Yield (kg/ha)	
	Kharif	Summer	Kharif	Summer	Kharif	Summer	Kharif	Summer	Kharif	Summer
Yash	99.3	94.4	6.5	4.2	11.3	20.6	68.7	68.3	5430	6080
HeemSohna	103.7	98.9	5.1	8.7	14.1	17.4	70.3	68.3	3800	10250
Naveen 2000	127.7	99.5	5.7	3.8	24.3	17.6	78.0	68.3	3900	5260
RK 123	101.9	98.2	5.0	8.7	18.9	22.9	66.0	69.7	5830	10030
Manisha	114.9	96.9	7.1	8.8	24.2	23.4	68.7	69.7	5860	11910
Red Gold	110.3	97.1	6.2	8.5	23.6	22.3	66.3	67.0	5240	13930
Hybrid 7730	108.3	99.0	6.7	3.6	18.6	22.3	64.7	67.0	5150	12190
Palam Pink	75.9	77.9	4.3	4.2	24.8	21.6	65.3	71.0	5200	6760
Sioux	106.7	99.7	7.2	2.7	19.0	21.8	69.3	71.0	4280	5990
Best of All	109.7	93.2	5.5	4.0	11.2	21.4	71.3	69.7	5710	2440
Mar Globe	91.5	93.0	6.7	10.5	28.5	23.3	72.7	68.3	4750	3860
Roma	105.1	97.9	7.9	6.9	25.7	26.4	61.3	68.3	6190	7530
CD (P=0.05)										

Table 7.2.3. Yield attributes and yield of tomato at Bajaura

Cauliflower variety US-178 under organic management at Bajaura

Hybrid Heem Sohna tomato under organic management at Bajaura

Performance of pea hybrid ten plus under organic management at Bajaura

Pea (Table 7.2.4): Eight varieties of pea for their performance under organic condition were studied. Variety 'Pb-89' gave significantly higher pod yield (7950 kg/ha) and significantly longer pods (9.7 cm) than the other varieties evaluated. Nirali and Ten plus also produced good yield of 7170 and 7000 kg/ha. GC-477 gave minimum yield of 4570 kg/ha, while it attained highest plant height (94 cm) as compared to all other varieties evaluated in the experiment.

Table 7.2.4. Yield attributes and yield of vegetable pea at Bajaura

Varieties/hybrids	Plant height (cm)	No. of seed/ pod	No. of pods/ plant	Pod length (cm)	Yield (kg/ha)
GC-477	94.0	5.2	12.3	7.0	4570
Pb-89	78.6	7.2	12.4	9.7	7950
Azad-P1	69.2	6.3	11.7	8.5	4890
PlamSumol	84.2	5.4	9.6	8.9	4800
PalamTriloki	60.4	5.5	10.2	8.7	6840
Nirali	64.0	5.8	11.1	8.8	7110
Annapurna	74.2	8.1	10.6	8.9	6350
Ten Plus	61.0	7.2	10.7	8.5	7000
CD (P=0.05)					

Bhopal

Response of varieties/hybrids of important crops in soybean-wheat and maize-chickpea system under organic management at Bhopal (Table 7.2.5 to 7.2.11)

Varieties of soybean, wheat, maize and chickpea were evaluated in soybean-wheat and maize-chickpea cropping system.

Soybean (Table 7.2.5): Among the varieties of soybean grown under similar nutrient source and doses, RVS-2002-4 resulted in higher seed and straw yield (726 and 1741 kg/ha)and harvest index but closely followed by FS 97-52 (723 kg/ha)) and JS-20-41 (705 kg/ha). Pods per plant (25.3) were also found significantly higher with these varieties than the other. Numbers of seeds per pod recorded higher in JS-97-52(3.2) with 114 days to maturity.

Wheat (Table 7.2.6): Among the wheat varieties, GW-399 recorded maximum seed yield and biomass (2907 and 3768 kg/ha). C-306 recorded lowest grain yield of wheat 2179 kg/ha.Malwashakti recorded higher seeds/spikes 73.9.

Varieties/hybrids	No. of Pods/ plant	Seeds/pod	Test weight (g)	Duration (No. of days)	Yield	Straw yield	Harvest index
JS-335	22.0	3.1	10.4	101.0	410	1226	0.25
JS-93-05	16.5	3.0	10.7	98.0	392	1065	0.27
JS-95-60	15.3	3.0	10.5	104.0	394	1148	0.26
JS-20-41	23.2	2.9	10.6	97.0	705	1673	0.30
NRC-7	19.3	3.1	10.5	101.0	671	1576	0.30
NRC-37	15.7	2.9	10.2	101.0	423	1266	0.25
RVS-2002-4	25.3	3.1	10.6	97.0	726	1741	0.29
RVS-2002-6	14.4	2.7	10.6	100.0	384	1103	0.26
RVS-2002-7	19.8	2.7	10.8	97.0	651	1622	0.29
JS-97-52	25.0	3.2	10.9	114.0	723	1768	0.29

 Table 7.2.5. Response of different varieties/hybrids of soybean under organic management at Bhopal

Varieites/hybrids	Spike/length (m)	Seeds/spikes	Yield (kg/ha)	Straw yield (kg/ha)	Harvest index
C-306	78.0	66.8	2179	2902	0.43
HI-8663	60.8	68.1	2272	3051	0.43
HI-1544	63	63.3	2545	3377	0.43
MALWASHAKTI	69.3	73.9	2684	3430	0.44
GW-322	62.5	72.3	2493	3083	0.46
GW-366	81.2	71.7	2907	3768	0.44
HI-1531	82.7	55.3	2718	3504	0.44
HI-8498	61.3	70.3	2640	3312	0.44
HI-1500	63.3	52.1	2461	3325	0.43
JW-1202	78.3	61.0	2708	3556	0.43
HD-932	66.0	60.0	2383	2930	0.45
LOK-1	67.7	57.0	2281	2947	0.44
CD (P= 0.05)	7.7	4.7			

Varieties/hybrids	Plant height (cm)	Cob/plant	Row/ cob	Seeds/ row	Yield	Straw yield	Harvest index
Kanchan	129.3	1.0	12.5	17.3	1340	1592	0.46
Pratap 5	138.8	1.0	10.6	15.4	1098	1546	0.42
Arawali	142.3	1.1	12.8	21.3	2137	2430	0.47
Sona 222	134.6	1.0	12.1	18.2	1410	1773	0.44
Pratap 6	140.2	1.0	10.0	15.2	1265	1714	0.42
JM 216	131.2	1.0	12.8	20.2	960	1292	0.43
Popcorn 1	123.8	1.0	10.5	18.8	886	1163	0.43
JM 8	141.1	1.0	11.9	17	1537	1962	0.44
JM 12	136.7	1.0	10.5	16.3	1252	1839	0.41
Proagro 4412	137.2	1.1	12.2	21.8	1801	2138	0.46
Sweet Corn	123.1	1.0	12.2	19.8	1171	1536	0.43
CPBG 4202	126.3	1.0	11.7	19.8	1634	2137	0.43
CD	13.7	NS	1.1	4.3	272	276	

Table 7.2.7. Response of different varieties/hybrids of Maize (Kharif) under organic management at Bhopal

Varieties/hybrids	Pods/plant	Seed/pod	Yield	Straw yield	Harvest index
RVG-202	62.1	1.6	1733	4519	0.38
JG-16	64.3	1.5	1807	4679	0.39
JGK-3	115.3	1.5	1159	3300	0.35
RVG-203	69.8	1.3	1870	4830	0.39
JG-11	73.5	1.5	1489	4100	0.36
JG-6	61.7	1.1	1433	3789	0.38
JG-130	76.5	1.7	1979	5104	0.39
JG-315	51.9	1.6	1483	3911	0.38
JG-63	54.4	1.3	1736	4556	0.38
JG-74	66.2	1.6	1467	4233	0.35
VIRAT	106.5	1.7	1248	3448	0.36
UJJWALA	98.7	1.1	963	2619	0.37
CD (P=0.05)	7.5	0.2	215	647	

Table 7.2.9. Response on physical and chemical properties under organic management at the end of cropping cycle (Soybean-wheat) at Bhopal

Soybean varieties/ hybrids	Wheat varieties/ hybrids	рН	EC	Available N (kg/ha)	Available P (kg/ha)	Available K (kg/ha)
JS-335	C-306	7.72	0.18	215	27.5	525
JS-93-05	HI-8663	7.71	0.19	230	24.9	521
JS-95-60	HI-1544	7.67	0.19	234	28.3	520
JS-20-41	Malawshakti	7.73	0.19	240	30.9	572
NRC-7	GW-322	7.80	0.19	245	30.5	539
NRC-37	GW-366	7.81	0.18	215	28.7	582
RVS-2002-4	HI-1531	7.74	0.20	247	33.6	553
RVS-2002-6	HI-8498	7.76	0.21	233	18.8	495
RVS-2002-7	HI-1500	7.74	0.2	218	27.6	530
JS-97-52	JW-1202	7.79	0.19	234	22.5	589
	HD-932	7.80	0.18	228	20.0	513
	LOK-1	7.79	0.18	222	20.9	543
	CD (P=0.05)	NS	NS	NS	7.8	44

Maize varieties/ hybrids	Chickpea varieties/ hybrids	рН	EC	Available N (kg/ha)	Available P (kg/ha)	Available K (kg/ha)
Kanchan	RVG-202	7.81	0.21	236	22.69	574
Pratap 5	JG-16	7.76	0.20	205	25.19	597
Arawali	JGK-3	7.72	0.20	230	24.76	594
Sona 222	RVG-203	7.66	0.20	271	24.67	601
Pratap 6	JG-11	7.92	0.18	249	20.08	609
JM 216	JG-6	7.93	0.19	223	21.75	659
Popcorn 1	JG-130	7.70	0.22	263	32.47	622
JM 8	JG-315	7.74	0.20	227	31.14	610
JM 12	JG-63	7.73	0.23	255	30.15	648
Proagro 4412	JG-74	7.82	0.21	242	23.91	620
Sweet Corn	VIRAT	7.89	0.19	244	18.93	598
CPBG 4202	UJJWALA	7.83	0.19	255	19.79	608
	CD (P=0.05)	NS	NS	33.94	7.0	27.8

 Table 7.2.10. Response on chemical and physical properties under organic management at the end of cropping cycle (Maize-chickpea) at Bhopal

Table 7.2.11. Influence of quality of soybean and maize under organic management at Bhopal

	Soybe	an			Ма	aize	
Varieties/ hybrids	Protein (%)	Oil (%)	Varieties/ hybrids	Protein (%)	Oil (%)	Ash (%)	Tryptophan (g/16 g N)
JS-335	36.2	19.6	Kanchan	9.71	3.45	1.41	0.81
JS-93-05	36.5	19.4	Pratap- 5	9.53	3.29	1.39	0.78
JS-95-60	36.1	18.8	Arawali	8.75	4.11	1.38	0.72
JS-20-41	36.1	18.8	Sona- 222	9.67	3.77	1.44	0.8
NRC-7	35.2	18.7	Pratap- 6	9.35	3.8	1.43	0.74
NRC-37	36.0	18.7	JM -216	9.51	3.76	1.39	0.71
RVS-2002-4	35.0	19.7	Popcorn -1	8.9	4.23	1.43	0.65
RVS-2002-6	35.2	20.0	JM- 8	9.4	3.66	1.45	0.84
RVS-2002-7	35.7	20.8	JM- 12	9.22	3.54	1.42	0.8
JS-97-52	35.7	18.9	Proagro- 4412	10	3.34	1.33	0.87
CD (P=0.05)	0.2	0.4	Sweet Corn	8.9	4.09	1.37	0.68
			CPBG 4202	9.74	3.55	1.35	0.79
			CD (P=0.05)	0.1	NS	NS	0.005

Maize (Table 7.2.7): Arawali recorded significantly higher yield (2137 kg/ha) and straw yield (2430 kg/ha). Proagro 4412 and CPBG 4202 also exhibited good yield. Arawali also recorded the maximum height of 142.3 cm while, Proagro 4412 recorded highest seeds/row.

Chick pea (Table 7.2.8): Among the Twelve varieties of chickpea grown, JG-130 resulted significantly higher Seed yield of 1979 kg/ha owing to higher seeds/pod (1.7) and total biomass (5104 kg/ha). RVG-203, JG-16, JG-63 and RVG-202 recorded yield ranging from 1733-1870 kg/ha. Ujjwala observed lowest yield of 963 kg/ha.Number of pods/plant resulted higher in Virat and JGK-3 106.5 and 115.3 respectively.

Soil chemical properties (Table 7.2.9): No significant effects were observed in soil pH, EC and available nitrogen. In term of available P, soybean variety (RVS-2002-4) and wheat (HI-1531) recorded highest available P (33.6 kg/ha), whereas in term of available K, soybean (JS-97-52) and wheat (JW-1202) recorded

Varietal evaluation of mazie under organic management at Bhopal

Varietal evaluation of chickpea under organic management at Bhopal

Varietal evaluation of wheat under organic management at Bhopal

Quality of maize (Table 7.2.11): Among the all maize varieties evaluated, higher protein (10%) and tryptophan (87g/16gN) was recorded with variety PROAGRO-4412. Other maize varieties resulted in protein value ranging from 9.74 (CPBG 4202) to 9.22% (JM 12). Sweet corn and (CPBG 4202) recorded lower protein and oil. Non-significant effect was found in oil and ash among all the varieties.

Calicut (Table 7.2.12)

Nine varieties of turmeric were evaluated in turmeric–fallow systems at Calicut

Nine varieties such as Suvarna, Suguna, Sudarshana, Kedaram, Prabha, Varna, Sobha,

higher available K (589 kg/ha) under soybean-wheat system at the end of cropping cycle. Significantly higher available N (271 kg/ha) was recorded in maize variety (Sona 222) and chickpea (RVG-203), however, higher available P (32.47 kg/ha) was recorded with maize (popcorn-1) and chickpea (JG-130).

Quality of soybean (Table 7.2.10): Among the soybean varieties there were difference recorded in protein and oil content. Higher protein (36.5%) was recorded with JS-93-05 whereas higher oil (20.8%) was found with RVS-2002-7. Other soybean varieties protein value ranged from 35 to 36.2% and oil ranged from 18.7-20%.

Evaluation of turmeric varieties under organic management at Calicut

Name of varieties	Rhizome yield (kg/ha)	Curcumin (%)
Varna	13600	4.2
Sobha	17100	4.6
Sona	20500	3.9
Kanthi	20100	4.4
Suvarna	17600	3.9
Suguna	24500	6.9
Sudarshana	29000	5.7
Kedaram	19500	5.2
Prabha	13200	6.1

Table 7.2.12: Response on yield and quality of varieties/hybrids in turmeric-fellow system under organic management at Calicut

Sonaand Kanthi were evaluated to study the response to organic farming. Maximum rhizome yield was recorded by Sudarshana (29000 kg/ha) followed by Suguna (24500 kg/ha). Sona, Kanthi, Kedaram Suvarnaan and Sobha also yield higher ranging from 20500-17100 kg/ha. Variety Prabha recorded lowest turmeric yield (13200 kg/ha). Among the varieties, maximum curcumin content (6.9%) was noticed in the variety Suguna followed by Prabha (6.1%) while Sona and Suvarna recorded (3.9%).

Coimbatore (Table 7.2.13 to 7.2.17)

Twelve rice varieties *viz.*,Bhavani, White ponni, Mappillai samba, Kitchilisamba, IR 20, CO 43, CO 48, CO 51, CB 05022, KDML 105, Red Kavuni and Jeeraga Samba were evaluated in RBD design with three replication for suitability under organic production system.

Varieties/ hybrids	No. of productive tillers/hill	No. of spikelet/ panicle	% filled grains	Grain wt. (g)	Plant ht. (cm)	Growth duration (days)	Grain yield (kg/ha)	Straw yield (kg/ha)	HI (%)
Bhavani	8.5	103.7	88.2	20.89	94.6	128	2580	3420	0.44
White ponni	14.7	105.0	72.0	15.45	91.2	125	2740	4620	0.37
Mappilai Samba	5.0	124.7	77.9	27.42	110.1	140	2180	6130	0.26
Kitchili Samba	12.1	102.0	83.1	16.49	112.0	129	2710	4210	0.42
IR 20	9.6	120.0	82.2	16.91	79.0	127	2550	3370	0.45
CO 43	6.1	159.3	70.9	19.41	92.7	129	2130	3890	0.36
CO 48	8.7	151.7	84.4	17.91	109.6	129	3190	4640	0.46
CO 51	7.0	115.7	68.9	16.04	88.8	106	1440	2670	0.35
CB05022	11.3	176.7	72.6	18.80	93.1	130	4380	4440	0.5
KDML 105	8.5	57.7	78.5	23.89	111.8	106	1490	3150	0.32
Red Kavuni	6.3	146.0	80.8	20.20	122.7	130	2370	4240	0.36
Jeeraga Samba	10.2	180.7	83.7	10.00	111.0	126	2460	5510	0.36
SEm±	0.9	8.7	3.3	0.44	8.7		300	530	0.04
CD (p=0.05)	1.8	18.2	6.8	0.91	18.1		610	1120	0.08

Table 7.2.13. Response on yield attributes and yields of rice varieties/hybrids under organic management at Coimbatore

Varieties/ hybrids	Kernel length (mm)	Kernel breadth (mm)	L/B ratio	Hulling %	Milling %	KLAC (mm)	KBAC (mm)	LER	BER	Water absorption ratio	Volume expansion ratio
Bhavani	5.6	1.9	2.95	78.0	72.8	8.3	2.7	1.48	1.42	3.02	2.6
White Ponni	5.6	1.9	2.95	84.0	74.0	8.5	2.6	1.52	1.37	3.05	2.6
Mappillai samba	a 5.6	1.8	3.11	81.6	73.6	8.8	2.8	1.57	1.56	3.18	2.7
Kitchili samba	5.9	1.8	3.28	74.8	68.0	7.2	2.0	1.22	1.11	3.38	2.5
IR 20	5.7	1.9	3.00	80.4	71.2	8.4	2.6	1.47	1.37	3.00	2.7
CO 43	5.6	2.1	2.67	88.4	79.2	8.3	2.8	1.48	1.33	3.13	2.8
CO(R) 48	5.8	1.8	3.22	76.0	68.4	8.5	2.6	1.47	1.44	3.52	3.0
CO(R) 51	5.8	1.8	3.22	71.6	65.6	8.4	2.5	1.45	1.39	3.10	2.8
CB 05022	5.9	1.9	3.11	70.0	60.0	8.9	2.6	1.51	1.37	3.23	3.0
KDML 105	7.0	1.8	3.89	85.2	78.0	10.3	2.5	1.47	1.39	3.81	3.4
Red kavuni	5.6	2.0	2.80	76.0	66.8	8.4	2.8	1.50	1.40	3.25	2.6
Jeeraga samba	4.0	1.8	2.22	82.8	77.2	6.0	2.3	1.50	1.28	3.36	2.9
L/B ratio-Length t ratio	oreadth ratio; Kl	L/B ratio-Length breadth ratio; KLAC=Kernel length after ratio		ng; KBAC=	-Kernel bre	adth after	cooking; L	_ER=Line	ar elonge	cooking; KBAC=Kernel breadth after cooking; LER=Linear elongation ratio; BER= Bre	Breadth wise elongation

Table 7.2.14. Physical and cooking parameters of different rice varieties under organic production systems at Coimbatore

Varieties/hybrids	Amylose	Amylose	Aroma	Gelatinization	n temperature	Gel con	sistency
	content (%)	character		Alkali	Rating o	Length f digestio gel (mm)	
Bhavani	17.5	I	2	I	3	58	Flaky
White Ponni	18.0	I	2	I.	3	60	Flaky
Mappillai samba	26.6	Н	2	I	4	65	Soft
Kitchili samba	26.5	н	2	Н	6	70	Soft
IR 20	24.3	Н	2	L	2	67	Soft
CO 43	18.8	I	2	I.	3	60	Flaky
CO(R) 48	16.2	L	2	I.	5	60	Flaky
CO(R) 51	17.2	I.	2	L	2	75	Soft
CB 05022	15.8	L	2	I	5	70	Soft
KDML 105	17.3	I	4	Н	7	65	Soft
Red kavuni	20.4	I	2	I	4	50	Flaky
Jeeraga samba	17.3	I	3	I	5	56	Flaky

L-Low; I-Intermediate; H-High

Yield characters and yield (Table 7.2.13):

Significantly higher grain yield, straw yield and harvest index was recorded with CB 05022 (4380, 6130 kg/ha and 0.50 respectively) compared to all the other 11 varieties evaluated in the experiment. Variety CO 48 was able to produce second highest grain yield (3190 kg/ha) and harvest index (0.46%), which is statistically on par with White Ponni (2740kg/ha) and Kichedi Samba (2710 kg/ha). Varieties Bhavani, IR 20, Jeeraga Samba, Red Kavuniand Mappilai samba recorded yield ranging from 2180-2580 kg/ha in terms of grain yield. The variety KDML and CO 51 could produce only less than two tonnes of grain yield (1490 and 1440 kg/ha respectively).The variety Jeeraga Sambare coded

Evaluation of rice varieties under organic management at Coimbatore

significantly higher spikelet/panicle (180.7), while Mappilai samba recorded highest thousand grain weight (27.42g). Though White Ponni recorded significantly higher productive tillers 14.7/hill, but due to moderate spikelets (105.0/panicle), 72% filled grain/panicle and moderate grain weight (15.45 mg) could produce only 2740 kg/ha of grain yield. Variety Red kavuni attained maximum plant height 122.7 cm.

Quality parameters (Table 7.2.14): Physical quality parameter such as kernel length, kernel breadth, length breadth ratio, hulling and milling percentage and cooking parameter such as kernel length after cooking, kernel breadth after cooking, linear elongation ratio, breadth wise elongation ratio, water uptake and volume expansion ratio were estimated at post-harvest stage.

Network Project on Organic Farming

KDML 105 recorded higher kernel length of 7 mm under long size category. Jeeraga samba recorded kernel length of 4.00 mm under short catogary. The other varieties, Bhavani, White ponni ,Mappillai samba, CO 43, Red kavuni, IR 20, CO(R) 48, CO(R) 51, Kitchili samba and CB 05022 registered the kernel length ranging from 5.6-5.9 mm and they were classified as medium size category. The variety CO 43 variety recorded numerically higher kernel breadth of 2.1 mm.Other varieties evaluated registered kernel breadth ranging from 1.8 to 2.0 mm. KDML 105 recorded the higher L/B ratio of 3.89 and classified as slender grain shape group. The varieties like Kitchili samba, CO(R) 48, CO(R) 51, Mappillai samba and culture CB 05022 recorded L/B ratio ranging from 3.28 to 3.11 and comes under slender grain shape category. Remaining varieties Bhavani, White ponni, IR 20, CO 43, Red kavuni and Jeeraga samba classified as medium in grain shape.VarietyCO 43 obtained higher hulling percentage (88.4%) followed by KDML 105, White ponni, Jeeraga samba, Mappillai samba, IR 20, Bhavani, CO(R) 48, Red kavuni, Kitchili samba, CO(R) 51. Genotype CB 05022 registered lower hulling percentage (70.0%). The same trend was followed in milling percentage of various rice varieties evaluated under organic production.

Cooking characters (Table 7.2.15): KDML 105 recorded highest kernel length after cooking(10.3mm) while Kitchili samba and Jeeraga samba recorded 7.2 and 6.0 mm respectively. Other varieties CB 05022, Mappillai samba, White Ponni, CO(R) 48, IR 20, CO(R) 51, Red kavuni, Bhavani and CO 43 recorded values ranging from 8.3 to 8.9 mm of kernel length after cooking. The higher Kernel breadth after cooking value of 2.8 was registered in the Mappillai samba, CO 43 and Red kavuni, while lowest value of 2.0 was recorded in the Kitchilisamba. Maximum linear elongation ratio and breadth wise elongation ratio were recorded in the variety Mappillai samba 1.57 and 1.56 respectively followed by White ponni and CO(R) 48. Water uptake had a positive influence on grain elongation and volume expansion ratio. KDML 105 recorded higher water absorption ratio and volume expansion ratio of 3.81 and 3.40 respectively followed by CO(R) 48 3.52 and 3.00 respectively. The variety IR 20 recorded lowest water absorption ratio of 3.00. The lesser volume expansion was noticed in Kitchili samba 2.50.

Bio-chemical characters (Table 7.2.16): Amylose content can play a significant role in determining the overall cooking, eating and pasting properties of a rice variety. The variety Mappillai samba, Kitchili samba and IR 20 registered amylose content of 26.6, 26.5 and 24.3 per cent, respectively and grouped under high amylose content category. The varieties Bhavani, White ponni, CO 43, CO(R) 51, KDML105, Red kavuni and Jeeraga samba comes under intermediate amylose content category. Varieties CO(R) 48 and CB 05022 recorded lower amylose content category. Aroma is important character in rice and variety KDML 105 recorded higher aroma content of 4 and classified as good quality. Aroma content of Jeeraga samba is 3 and classified as moderate and rest of the varieties CO(R) 51, CB 05022, Red kavuni, Bhavani, White ponni, CO(R) 48, CO 43, IR 20, Kitchili samba and Mappillai samba were having lower aroma content of 2 and classified as poor. The gelatinization temperature of the endosperm starch, a useful test of cooking quality, refers to the cooking temperature at which water is absorbed and the starch granules well irreversibly in hot water with a simultaneous loss of crystallinity and birefringence. The time required for cooking is determined by the gelatinization temperature. Varieties IR 20 and CO(R) 51 recorded lower alkali digestion described as kernel not affected/swollen and comes under rating 2. The varieties Bhavani, White ponni and CO 43, Mappillai samba, CO(R) 48 and CB 05022 are grouped in the rating 3 based on the alkali digestion value. The variety KDML 105 has high alkali digestion value and grouped under 7th category describes kernel completely dispersed. Varieties Mappillai samba, Kitchili samba, IR 20, CO(R) 51, CB 05022, KDML 105 have higher length of gel consistency (>60 mm) and they were classified as soft rice. Bhavani, White ponni, CO 43, CO(R) 48, Red kavuni and Jeeraga samba have gel consistency lesser than 60 mm and were classified as flaky rice.

			,			,		:	
Varieties/hybrids		Pest incid	incidence			-	Natural enemies (Nos. hill ⁻¹)	(Nos. hill ⁻¹)	
	Green	Brown	Leaf	Stem borer (%)	rer (%)	Spider	Rove Beetle	Mirid Bug	Lady Bird beetle
	Leaf	Plant	folder	Dead	White				
	hopper (Nos. hill ⁻¹)	hopper (Nos. hill ⁻¹)	(%)	heart	ear				
Bhavani	1.75*(2.57)	1.60(2.07)	3.37	4.77	1.18	1.27(1.10)	1.76(2.60)	1.08(0.67)	1.05(0.60)
White Ponni	1.97(3.40)	1.99(3.47)	3.72	4.50	1.88	1.39(1.43)	1.37(1.37)	1.11(0.73)	1.00(0.50)
Mappillai samba	1.84(2.90)	2.24(4.53)	5.72	7.11	3.33	1.28(1.13)	1.21(0.97)	1.13(0.77)	1.06(0.63)
Kitchili samba	1.82(2.80)	2.10(3.90)	2.54	5.57	2.25	1.38(1.40)	1.25(1.07)	1.08(0.67)	1.05(0.60)
IR 20	1.98(3.43)	1.68(2.33)	2.97	3.61	1.04	1.15(0.83)	1.41(1.50)	1.10(0.70)	1.11(0.73)
CO 43	1.80(2.73)	2.06(3.73)	4.36	8.23	3.06	1.33(1.27)	1.61(2.10)	1.17(0.87)	1.26(1.10)
CO(R) 48	1.89(3.07)	1.90(3.10)	3.13	4.27	1.87	1.33(1.27)	1.44(1.57)	1.09(0.70)	1.06(0.63)
CO(R) 51	2.37(5.10)	2.10(3.90)	4.36	8.15	3.75	1.42(1.53)	1.70(2.40)	1.06(0.63)	1.08(0.67)
CB 05022	1.84(2.90)	2.59(6.23)	3.46	6.22	2.32	1.30(1.20)	1.60(2.07)	1.33(1.27)	1.29(1.17)
KDML 105	1.91(3.13)	2.68(6.67)	2.92	5.66	2.36	1.21(0.97)	1.61(2.10)	1.29(1.17)	1.31(1.23)
Red kavuni	1.69(2.40)	2.22(4.43)	3.18	3.30	1.25	1.34(1.30)	1.39(1.43)	1.35(1.33)	1.18(0.90)
Jeeraga samba	1.90(3.10)	1.88(3.03)	4.33	5.49	2.41	1.37(1.37)	1.49(1.73)	1.21(0.97)	1.26(1.10)
SEd±	0.08	0.11	ı		ı	0.01	0.02	0.01	0.01

Table 7.2.16 Pests and natural enemies on different cultivars of rice grown under organic management at Coimbatore

0.03

0.03

0.04

0.03

Figures in parenthesis are original values, * square root transformed values

0.22

0.17

CD (P=0.05)

Insect pests and natural enemies (Table 7.2.16 to 7.2.17): The major insect pests observed in the experimental field were the green leaf hopper, brown plant hopper, yellow stem borer and leaf folder under organic management conditions. The rice variety RedKavuni recorded lowest green leaf hopper population of 2.40 hill⁻¹ which was on par with Bhavani, Mappillai samba, Kitchili samba,CO-43 and CB-05022. The higher green leaf hopper population of 5.10 hill⁻¹ was found in CO(R) 51.The variety Bhavani recorded the lowest brown plant hopper population of 2.07 hill⁻¹ which was statistically on par with IR 20. The highest brown plant hopper incidence of 6.67 per hill was observed in KDML 105. The leaf folder damage was lowest (2.54%) in Kitchili samba followed by KDML 105, IR 20 and Red kavuni 2.92, 2.97 and 3.18%, respectively. The higher leaf folder damage of 5.72% was observed in Mappillai samba.The symptoms at vegetative stages caused by yellow stem borers were lowest (3.30%) in Red Kavuni followed by IR 20 (3.61%) and White ponni (4.50%). The highest incidence was noticed in CO 43 (8.23%). The white ear symptoms observed during milking stage of the crops were lowest (1.25%) in Red kavuni,while higher in CO(R) 51 (3.75%).

Natural enemies: The natural enemies commonly observed are spiders, rove beetles, mirid bugs and lady bird beetles. The rove beetles population per hill was more irrespective of varieties evaluated followed by spiders and mirid bugs. The number of spider population over the varieties ranges from 0.83 to 1.53. The highest was statistically on par with each other. The rove beetle population was highest (2.40) in CO(R) 51. The lowest rove beetle numbers of 0.97 was observed in Mappillai samba and was on par with Kitchili samba. Red kavuni recorded the highest population of mirid bugs (1.33) which was on par with CB 05022. The lowest numbers (0.63) of mirid bugs were found in CO (R) 51 which was statistically on par with the Bhavani, White ponni ,Kitchili samba, IR 20 and CO(R) 48. The lady bird numbers were more (1.23) in KDML 105 and less in White ponni (0.50).

Economics (Table 7.2.17): The cost involved in the organic management practices ranged from ₹ 31,190 to ₹ 31,220/ha. The lower cost of cultivation of ₹ 31,190/ha was recorded in Bhavani, White ponni, IR 20, CO 43, CO(R) 48, CO(R) 51 and CB 05022. Among the different rice varieties evaluated under organic production systems, higher gross returns of ₹ 71,205/ha, net return of ₹ 40,015/ha and B:C ratio of 2.28 was recorded in the variety CB 05022 and it was followed by Kitchili samba Gross return ₹ 63,643/ha, net return ₹ 32423/ha and and B:C ratio of 2.28. The lower gross return of ₹ 34,929/ha, net return of ₹ 3739/ ha and B:C ratio of 1.12 was recorded in the variety CO (R) 51.

Varieties/hybrids	Cost of cultivation (₹ /ha)	Gross return (₹ /ha)	Net return (₹ /ha)	B:C ratio
Bhavani	31190	44968	13778	1.44
White Ponni	31190	48686	17496	1.56
Mappillai samba	31220	62518	31298	2.00
Kitchili samba	31220	63643	32423	2.04
IR 20	31190	36954	5764	1.18
CO 43	31190	36757	5567	1.18
CO(R) 48	31190	44947	13757	1.44
CO(R) 51	31190	34929	3739	1.12
CB 05022	31190	71205	40015	2.28
KDML 105	31220	53736	22516	1.72
Red kavuni	31220	59335	28115	1.90
Jeeraga samba	31220	62651	31431	2.01

Table 7.2.17. Economics of rice varieties under organic farming at Coimbatore

Dharwad (Table 7.2.18 to 7.2.22)

Ten varieties of soybean, eleven varieties of groundnut, 320 varieties of cotton, nine varieties of wheat and eight varieties of chickpea were evaluated in cropping system mode.

Soybean (Table 7.2.18): Ten varieties of soybean were evaluated in *kharif* season in RBD design with three replications. Genotypes DSB 21 recorded maximum number of pods/plant (45.3) and 100 seed weight (12.8g) followed by JS 335 and DSB 16 (943.3 and 12.7 respectively). Genotypes DSB 22 and DSB19recorded lowest pod/plant and 100 seed weight. Cultivar DSB 16 recorded higher seed yield (2291 kg/ha)net return (Rs.50,089/ha) and B:C ratio (3.69) followed by DSB 21 and DSB 20. Cultivar KHSB 2 was the lower producer of grain yield, net return and B:Cratio. Cultivar DSB 21 and DSB 16 in organic production system were found more remunerative over other cultivars of JS 335 and KHSB 2.

Groundnut (Table 7.2.19): Eleven varieties of groundnut were studied for their performance under organic management during *kharif* 2013. Significantly higher dry pod weight (45.51g/plant),dry pod yield (3571 kg/ha), net return (Rs. 1,20,196/ha) and B:C ratio (6.32) was recorded with groundnut cultivar cv. TGLPS 3 followed by GPBD 4. Cultivation of TGLPS 3 under organic production system was found more remunerative in terms of net return. Groundnut cultivar Dh 200-1 recorded lowest dry pod yield, net return and B:C ratio.

Cotton (Table 7.2.20): Among the 320 varieties of cotton grown under similar organic nutrient source and doses, cultivars GHAM 82 produced 158, 113, 206 and 126 % higher seed cotton yield and GHAM 34 produced 193, 142, 246 and 156 % higher seed cotton yield over cultivars Sahana (794 kg/ha), MCV 5 (961 kg/ha), DS 28 (671 kg/ha) and Surabhi (908 kg/ha), respectively, under organic production system.

Wheat (Table 7.2.21): Among the variety of wheat grown under similar organic nutrient source and doses, DWR 162 out performed and recorded significantly higher tillers/m row length (113.71), total dry matter (126.65 g/plant), nos. of grains/spike (36.56), grain yield (1678 kg/ha), net return (Rs. 18091/ha)

Soybean genotypes	Number of pods/plant	100 Seed weight (g)	Seed weight (g/plant)	Seed yield (kg/ha)	Cost of cultivation (Rs/ha)	Gross returns (Rs/ha)	Net returns (Rs/ha)	B:C Ratio
DSB-21	45.28	12.780	16.260	2207	18,631	66,204	47,573	3.55
DSB-20	41.13	12.430	15.540	2155	18,631	64,645	46,014	3.47
BDSB-18	40.20	12.230	15.290	2062	18,631	61,866	43,235	3.32
DSB-1	39.60	12.200	14.130	2079	18,631	62,360	43,729	3.35
DSB-22	32.47	11.330	16.080	2091	18,631	62,730	44,099	3.37
DSB-19	30.48	11.000	10.790	2078	18,631	62,342	43,711	3.35
DSB-16	43.05	12.630	17.280	2291	18,631	68,720	50,089	3.69
KHSB-2	41.60	12.500	15.610	1927	18,631	57,820	39,189	3.10
JS-335	43.33	12.760	16.130	2064	18,631	61,925	43,294	3.32
JS-9305	39.19	12.180	13.670	2059	18,631	61,764	43,133	3.32
SEm±	1.15	0.39	1.04	62	_	1856	1,856	0.10
CD (P=0.05)	3.41	NS	3.08	184	_	5515	5,515	0.30

Groundnut genotypes	Number of pods/plant	Dry pod weight (g/plant)	100 Kernel weight (g)	Dry pod yield (kg/ha)	Net returns (Rs/ha)	B:C Ratio
Dh 4-3	34.000	38.490	36.990	3189	1,04,704	5.64
Dh 86	32.820	34.930	38.350	2965	95,996	5.25
Dh 200-1	27.650	34.500	39.070	2785	88,820	4.93
Dh 101	32.690	39.140	37.240	3388	1,12,936	6.00
Mutant III	31.450	35.830	35.290	3265	1,07,999	5.78
JL 24	30.690	39.190	39.470	3207	1,05,676	5.68
TMV 2	32.700	31.000	36.020	3025	98,420	5.36
TGLPS 3	34.920	45.510	37.980	3570	1,20,196	6.32
GPBD 4	35.820	40.610	42.210	3556	1,19,656	6.30
GPBD 5	34.580	40.180	37.760	3148	1,03,353	5.58
G-2-52	38.810	40.730	41.680	3214	1,10,549	5.90
SEm±	1.90	2.35	0.36	184	7,391	0.33
CD (P=0.05)	5.60	6.94	1.51	543	21,804	0.97

Table 7.2.19. Yield attributes, yield and economics of groundnut at Dharwad

Table 7.2.20 Seed cotton yield at Dharwad

SI.	Varieties/	Seed cotton	SI.	Varieties/	Seed cotton	SI.	Varieties/	Seed cotton
No.	hybrids	yield (kg/ha)	No.	hybrids	yield (kg/ha)	No.	hybrids	yield (kg / ha)
1	GHAM 1	1300	41	GHAM 41	1456	81	GHAM 81	1136
2	GHAM 2	1122	42	GHAM 42	1383	82	GHAM 82	2056
3	GHAM 3	767	43	GHAM 43	1500	83	GHAM 83	1078
4	GHAM 4	939	44	GHAM 44	1022	84	GHAM 84	1040
5	GHAM 5	1006	45	GHAM 45	1097	85	GHAM 85	978
6	GHAM 6	650	46	GHAM 46	1597	86	GHAM 86	1144
7	GHAM 7	1172	47	GHAM 47	750	87	GHAM 87	817
8	GHAM 8	619	48	GHAM 48	656	88	GHAM 88	875
9	GHAM 9	1344	49	GHAM 49	853	89	GHAM 89	1297
10	GHAM 10	575	50	GHAM 50	1303	90	GHAM 90	1118
11	GHAM 11	1365	51	GHAM 51	792	91	GHAM 91	743
12	GHAM 12	1450	52	GHAM 52	1108	92	GHAM 92	1092
13	GHAM 13	1293	53	GHAM 53	339	93	GHAM 93	606
14	GHAM 14	889	54	GHAM 54	892	94	GHAM 94	1192
15	GHAM 15	843	55	GHAM 55	1021	95	GHAM 95	868
16	GHAM 16	886	56	GHAM 56	1211	96	GHAM 96	961
17	GHAM 17	1283	57	GHAM 57	1367	97	GHAM 97	449
18	GHAM 18	386	58	GHAM 58	1011	98	GHAM 98	362
19	GHAM 19	1061	59	GHAM 59	743	99	GHAM 99	487
20	GHAM 20	736	60	GHAM 60	564	100	GHAM 100	556
21	GHAM 21	1894	61	GHAM 61	1953	101	GHAM 101	978
22	GHAM 22	1367	62	GHAM 62	1743	102	GHAM 102	756
23	GHAM 23	1633	63	GHAM 63	1719	103	GHAM 103	1208
24	GHAM 24	1201	64	GHAM 64	1199	104	GHAM 104	689
25	GHAM 25	1372	65	GHAM 65	962	105	GHAM 105	835
26	GHAM 26	1075	66	GHAM 66	393	106	GHAM 106	715

Network Project on Organic Farming

SI. No.	Varieties/ hybrids	Seed cotton yield (kg/ha)	SI. No.	Varieties/ hybrids	Seed cotton yield (kg/ha)	SI. No.	Varieties/ hybrids	Seed cotton yield (kg / ha)
27	GHAM 27	160	67	GHAM 67	482	107	GHAM 107	1390
28	GHAM 28	328	68	GHAM 68	1293	108	GHAM 108	815
29	GHAM 29	1006	69	GHAM 69	768	109	GHAM 109	1349
30	GHAM 30	328	70	GHAM 70	1050	110	GHAM 110	1194
31	GHAM 31	1017	71	GHAM 71	1239	111	GHAM 111	729
32	GHAM 32	511	72	GHAM 72	708	112	GHAM 112	1094
33	GHAM 33	1024	73	GHAM 73	1046	113	GHAM 113	743
34	GHAM 34	2328	74	GHAM 74	1469	114	GHAM 114	868
35	GHAM 35	819	75	GHAM 75	1244	115	GHAM 115	469
36	GHAM 36	931	76	GHAM 76	475	116	GHAM 116	807
37	GHAM 37	1036	77	GHAM 77	903	117	GHAM 117	972
38	GHAM 38	1183	78	GHAM 78	926	118	GHAM 118	914
39	GHAM 39	615	79	GHAM 79 GHAM 80	851	119	GHAM 119 GHAM 120	487
40 121	GHAM 40 GHAM 121	644 886	80 161	GHAM 80 GHAM 161	969 1067	120 201	GHAM 120 GHAM 201	654 842
122	GHAM 122	900	162	GHAM 162	1010	202	GHAM 202	1322
123	GHAM 123	964	163	GHAM 163	889	203	GHAM 203	1339
124	GHAM 124	1737	164	GHAM 164	1012	204	GHAM 204	464
125	GHAM 125	1417	165	GHAM 165	1078	205	GHAM 205	590
126	GHAM 126	1442	166	GHAM 166	964	206	GHAM 206	1856
127	GHAM 127	854	167	GHAM 167	1008	207	GHAM 207	1267
128	GHAM 128	1146	168	GHAM 168	1217	208	GHAM 208	1581
129	GHAM 129	1033	169	GHAM 169	1049	209	GHAM 209	1233
130	GHAM 130	1171	170	GHAM 170	217	210	GHAM 210	1033
131	GHAM 131	694	171	GHAM 171	900	211	GHAM 211	1510
132	GHAM 132	744	172	GHAM 172	921	212	GHAM 212	731
133	GHAM 133	672	173	GHAM 173	654	213	GHAM 213	885
133	GHAM 133 GHAM 134	1397	173	GHAM 173 GHAM 174	1358	213	GHAM 213 GHAM 214	793
135	GHAM 135	974	175	GHAM 175	690	215	GHAM 215	1057
136	GHAM 136	1329	176	GHAM 176	1174	216	GHAM 216	1136
137	GHAM 137	819	177	GHAM 177	1681	217	GHAM 217	1622
138	GHAM 138	999	178	GHAM 178	649	218	GHAM 218	1233
139	GHAM 139	547	179	GHAM 179	818	219	GHAM 219	1117
140	GHAM 140	997	180	GHAM 180	333	220	GHAM 220	1237
141	GHAM 141	717	181	GHAM 181	1485	221	GHAM 221	1204
142	GHAM 142	1669	182	GHAM 182	953	222	GHAM 222	683
143	GHAM 143	1472	183	GHAM 183	960	223	GHAM 223	797
144	GHAM 144	721	184	GHAM 184	926	224	GHAM 224	1064
145	GHAM 145	569	185	GHAM 185	1158	225	GHAM 225	800
146	GHAM 146	1418	186	GHAM 186	992	226	GHAM 226	1460
147	GHAM 147	1161	187	GHAM 187	1253	227	GHAM 227	1351
148	GHAM 148	843	188	GHAM 188	657	228	GHAM 228	703

Network Project on Organic Farming

SI. No.	Varieties/ hybrids	Seed cotton yield (kg/ha)	SI. No.	Varieties/ hybrids	Seed cotton yield (kg/ha)	SI. No.	Varieties/ hybrids	Seed cotton yield (kg/ha)
149	GHAM 149	1068	189	GHAM 189	1071	229	GHAM 229	1008
150	GHAM 150	922	190	GHAM 190	1089	230	GHAM 230	1456
151	GHAM 151	681	191	GHAM 191	1625	231	GHAM 231	1167
152	GHAM 152	1492	192	GHAM 192	1331	232	GHAM 232	1244
153	GHAM 153	1549	193	GHAM 193	794	233	GHAM 233	1231
154	GHAM 154	925	194	GHAM 194	919	234	GHAM 234	847
155	GHAM 155	933	195	GHAM 195	1015	235	GHAM 235	1682
156	GHAM 156	1033	196	GHAM 196	661	236	GHAM 236	1311
157	GHAM 157	1033	197	GHAM 197	506	237	GHAM 237	1261
158	GHAM 158	647	198	GHAM 198	767	238	GHAM 238	1375
159	GHAM 159	874	199	GHAM 199	669	239	GHAM 239	579
160	GHAM 160	897	200	GHAM 200	732	240	GHAM 240	1060
241	GHAM 241	1292	268	GHAM 268	319	295	GHAM 295	619
242	GHAM 242	1603	269	GHAM 269	965	296	GHAM 296	868
243	GHAM 243	1092	270	GHAM 270	839	297	GHAM 297	908
244	GHAM 244	926	271	GHAM 271	1083	298	GHAM 298	1258
245	GHAM 245	1056	272	GHAM 272	611	299	GHAM 299	812
246	GHAM 246	807	273	GHAM 273	444	300	GHAM 300	361
247	GHAM 247	979	274	GHAM 274	893	301	GHAM 301	1014
248	GHAM 248	1156	275	GHAM 275	999	302	GHAM 302	1906
249	GHAM 249	814	276	GHAM 276	1417	303	GHAM 303	1686
250	GHAM 250	587	277	GHAM 277	640	304	GHAM 304	875
251	GHAM 251	797	278	GHAM 278	835	305	GHAM 305	894
252	GHAM 252	1067	279	GHAM 279	833	306	GHAM 306	708
253	GHAM 253	1372	280	GHAM 280	939	307	GHAM 307	703
254	GHAM 254	1561	281	GHAM 281	1204	308	GHAM 308	792
255	GHAM 255	1337	282	GHAM 282	658	309	GHAM 309	944
256	GHAM 256	1086	283	GHAM 283	1408	310	GHAM 310	786
257	GHAM 257	400	284	GHAM 284	714	311	GHAM 311	550
258	GHAM 258	1653	285	GHAM 285	1044	312	GHAM 312	872
259	GHAM 259	575	286	GHAM 286	907	313	MCU-5 (C)	961
260	GHAM 260	467	287	GHAM 287	869	314	Sahana(C)	794
261	GHAM 261	836	288	GHAM 288	414	315	DS-28 (C)	671
262	GHAM 262	1564	289	GHAM 289	658	316	Surabhi (C)	908
263	GHAM 263	1139	290	GHAM 290	600	317	GHAM 317	669
264	GHAM 264	683	291	GHAM 291	1019	318	GHAM 318	392
265	GHAM 265	600	292	GHAM 292	697	319	GHAM 319	1025
266	GHAM 266	1208	293	GHAM 293	467	320	ARBH-813	942
267	GHAM 267	1153	294	GHAM 294	487			
	CD (P=0.05)) 812.8						

Varieties/ hybrids	Plant height (cm)	Number of tillers/ m row length	Total dry matter (g/plant)	Number of grains/spike	Grain yield (kg/ha)	Net returns (Rs/ha)	B:C ratio
UAS 185	59.82	97.47	118.77	31.31	1344	12,736	2.45
UAS 428	58.12	95.04	118.26	30.95	1313	12,240	2.40
GW 322	56.58	107.96	125.47	34.72	1634	17,387	2.98
DWR 162	54.68	113.71	126.65	36.56	1678	18,091	3.06
UAS 446	57.83	105.02	120.41	31.52	1383	13,360	2.52
UAS 304	56.46	108.10	123.72	34.36	1605	16,923	2.93
UAS 334	54.92	106.33	123.10	33.40	1505	15,323	2.75
MACS 622	53.02	103.77	120.68	32.51	1451	14,448	2.65
UAS 415	52.18	98.37	119.88	32.27	1352	12,951	2.48
SEm±	0.11	4.28	0.03	0.11	1.11	1110	0.01
CD (P=0.05)	0.33	NS	0.09	0.35	3.33	3331	0.03

 Table 7.2.21. Yield attributes, yield and economics of wheat at Dharwad

and B:C ratio of 3.06. DWR 162 and UAS 304 also produced 21and 16% higher grain yield, respectively over UAS 446 (1383 kg/ha) under organic production system.

Chickpea (Table 7.2.22): Among the chickpea varieties, JAKI 9218, A1 and BGD 103 out performed in terms of all traits, MNK 1 was the lower performer in all the measured variables. Cultivars JAKI 9218, A1 and BGD 103 produced 23.41, 21.07 and 21.75 % higher seed yield, respectively over cultivar ICCV 2 (2097 kg/ha) under organic production system.

Chickpea genotypes	Plant height (cm)	Number of branches/ plant	Dry matter production (g/plant)	Number of pods/plant	Seed weight (g/plant)	Seed yield (kg/ha)	Net returns (Rs/ha)	B:C Ratio
BGD 103	40.56	15.14	23.170	40.32	10.890	2553	50,808	2.64
GBM 2	39.82	14.09	22.010	39.21	10.590	2480	48,491	2.57
JG 11	40.05	14.93	21.760	40.9	11.040	2501	49,140	2.59
A1	36.90	15.20	23.970	41.23	11.130	2556	50,924	2.65
JAKI 9218	36.26	16.05	24.550	42.23	11.400	2588	51,945	2.68
MNK 1	39.82	14.22	21.960	38.53	10.400	2423	46,668	2.51
BG 1105	36.72	12.42	21.970	37.54	10.140	2182	38,929	2.26
ICCV 2	39.19	11.25	20.970	36.53	9.860	2097	36,212	2.17
SEm±	0.07	0.13	0.23	0.93	0.25	34	1,103	0.03
CD(P=0.05)	0.21	0.42	0.71	2.83	0.76	104	3,346	0.10

Table 7.2.22 Yield attributes, yield and economics of chickpea at Dharwad

Jabalpur (Table 7.2.23 to 7.2.26)

Rice (Table 7.2.23): Each twelve varieties of rice and wheat was evaluated in rice-wheat system. Significant difference among the varieties for plant height, panicle length, grains/panicle and grain yield were recorded with PS3 (77.2 cm, 26.2 cm, 138.7 and 3410 kg/ha respectively) and it was statistically at par with Dhanteshwari, PS 5 and Madhuri.BVD 109 achieved lower height, panicle length, grains/panicle and grain yield.

Rice varieties/ hybrids	Plant height (cm)	Panicle length (cm)	No. of effective tillers /m²	No. of grain/ panicle	1000 grain wt. (g)	Grain yield (kg/ha)	Straw yield (kg/ha)	Harvest Index
PS 5	75.2	25.7	440.0	136.2	25.2	3349	5160	0.39
Shehdri	60.1	21.8	283.3	114.3	22.7	2810	4775	0.37
PS 4	64.8	23.7	336.5	122.8	25.5	3020	4925	0.38
BVD 109	58.1	20.5	258.3	102.8	25.0	2529	4610	0.35
JR-201	61.1	22.5	301.5	117.5	25.6	2889	4840	0.37
Dhanteshwari	76.3	25.9	468.3	137.5	23.2	3382	5200	0.39
Madhuri	73.2	25.1	411.5	134.5	25.5	3309	5112	0.39
IR 36	69.7	24.6	381.5	132.2	22.8	3251	5005	0.39
MTU 1010	67.8	24.4	366.5	129.4	22.9	3183	4967	0.39
IR 64	63.1	23.2	325.0	119.6	23.0	2941	4885	0.38
Pusa 1	59.1	20.5	261.5	107.5	25.5	2643	4680	0.36
PS 3	77.2	26.5	475.0	138.7	25.0	3410	5240	0.39
CD (p=0.05)								

Table 7.2.24. Yield attributes, yield and harvest index of wheat at Jabalpur

Wheat varieties/ hybrids	Plant height (cm)	Panicle length (cm)	No. of effective tillers /m²	No. of grain/ panicle	1000 grain wt. (g)	Grain yield (kg/ha)	Straw yield (kg/ha)	Harvest Index
JW 17	73.6	10.4	139.1	42.3	42.0	3327	5656	0.38
JW 3020	72.2	9.3	138.1	40.3	41.5	3331	5663	0.38
JW 3173	72.9	10.0	139.5	45.0	42.2	4063	6906	0.38
JW 3269	73.0	10.0	140.3	46.7	41.8	3290	5594	0.38
JW 3288	73.1	10.3	139.1	41.3	41.6	3453	5869	0.38
HI 1531	72.7	9.4	138.2	41.3	41.8	3107	3728	0.40
HI 1500	74.0	11.0	141.3	47.6	41.3	2841	3409	0.40
C 306	72.9	9.0	138.9	38.3	42.3	3455	4146	0.40
HW 2004	73.4	10.0	139.7	42.1	41.7	3453	4144	0.41
HI 2987	71.9	8.1	138.0	37.3	42.0	2592	3110	0.40
HD 4672	73.9	10.9	138.2	46.0	42.0	3576	4291	0.41
HI 1418	72.7	9.4	138.2	41.3	42.4	2838	3406	0.40
CD (p=0.05)								

Wheat (Table 7.2.24): Not much variation was recorded in plant height, among different. Though maximum spike length and grains/spike were recorded by HI-1500 (11.0 and 47.6 cm) respectively it was statistically at par with JW-3269 and HD-4672. Wheat variety JW-3173 gave the significantly higher yield (4063 kg/ha) than all the other varieties. The lowest grain yield was recorded by HI-2987 (2592 kg/ha). Straw yield also followed trend.

Soil physical and chemical properties (Table 7.2.25): The difference among the varieties in respect of physical and chemical properties was non-significant. Maximum organic carbon content (7.17%) in the soil was found to be with rice (JR-201)-wheat (JW-3288) systemand it was closely followed by varieties of both crops in rice-wheat system. Maximum available N (277 kg/ha) was found to be with rice (JR-201) and wheat (JW-3288) system and minimum was with rice (Shehdri)-wheat(JW-3020) system 266 kg/ha. VarietyPS-5 of rice in *kharif* and JW-17 of wheat in *rabi* recorded higher available P (14.4 kg/ha) while minimum (12.8 kg/ha) was with Madhuri in *kharif* and HI-1500 in *rabi*.

Rice	Wheat	рН	EC (dSm ⁻¹)	OC (%)	Available N (kg/ha)	Available P (kg/ha)	Available K (kg/ha)
PS 5	JW 17	7.25	0.32	7.07	275	14.4	296
Shehdri	JW 3020	7.43	0.33	6.67	266	12.9	287
PS 4	JW 3173	7.33	0.31	7.07	272	14.0	295
BVD 109	JW 3269	7.31	0.33	6.92	270	13.5	292
JR-201	JW 3288	7.15	0.33	7.17	277	14.0	300
Dhanteshwari	HI 1531	7.13	0.35	6.75	269	13.2	296
Madhuri	HI 1500	7.31	0.36	7.06	269	12.8	293
IR 36	C 306	7.31	0.34	6.97	270	13.0	295
MTU 1010	HW 2004	7.22	0.34	6.72	268	13.3	291
IR 64	HI 2987	7.23	0.33	6.97	276	13.8	299
Pusa 1	HD 4672	7.20	0.34	6.92	272	13.5	296
PS 3	HI 1418	7.16	0.36	6.72	267	13.3	291
CD (p=0.05)							

Table 7.2.26. Microbial cha	anges in soil at the end of	f cropping cycle at Jabalpur

Kharif (Rice)	<i>Rabi</i> (Wheat)	Fungi (x10 ⁶ CFU/g)	Bacteria (x10 ⁶ CFU/g)	Azatobacter (x10 ⁶ CFU/g)	PSB (x10º CFU/g)	Actinomycets (x10 ⁶ CFU/g)
PS 5	JW 17	35.2	48.3	26.30	16.1	15.1
Shehdri	JW 3020	34.5	45.5	24.65	15.4	14.2
PS 4	JW 3173	34.7	46.8	25.80	16.0	14.8
BVD 109	JW 3269	34.9	47.7	25.53	15.4	15.8
JR-201	JW 3288	36.1	46.1	26.71	16.0	15.0
Dhanteshwari	HI 1531	35.2	45.5	25.55	15.6	14.7
Madhuri	HI 1500	35.6	47.1	25.55	14.9	14.7
IR 36	C 306	35.6	45.6	26.05	15.5	14.8
MTU 1010	HW 2004	34.6	45.6	25.35	14.6	20.5
IR 64	HI 2987	36.0	45.9	26.50	15.6	15.0
Pusa 1	HD 4672	35.5	45.6	26.05	15.5	14.8
PS 3	HI 1418	34.7	45.1	25.45	15.0	14.6
CD (p=0.05)						

Performance of wheat varieties under organic management at Jabalpur

Microbial changes in soil (Table 7.2.26): Among the varieties grown in *kharif* and *rabi* in system mode, no much variation was found except *Actinomycets*. Maximum fungi (36.1x10⁴ CFU/g) and *azatobacter* (26.7x10⁶ CFU/g) was recorded in rice (JR-201)wheat (JW-3288). Bacteria and PSB was found to be higher in rice (PS-5)-wheat (JW 17) (48.3 to 16.110⁶ CFU/g). System rice (MTU-1010)-wheat (HW-2004) retained significantly higher *Actinomycets* 20.5x10⁶ CFU/g while lower was with rice (Shehdri)-wheat (JW 3020) system (14.2x10⁶ CFU/g).

Karjat (Table 7.2.27 to 7.2.29)

During *kharif* season 15 varieties of rice were grown and after harvest of rice crop, 15 groundnuts varieties were also tested during *rabi* season in the system mode under organic management.

Rice (Table 7.2.27): Higher grain and straw yield was recorded by sahyadri-5 (4710 and 5510 kg/ha) in comparison to rest of rice varieties except sahyadri-4 and sahyadri-3 hybrids. Lowest grain yield was

Rice varieties/ hybrids	Plant Height (cm)	No. of tillers/ hill	Effective tillers/ hill	Panicle Length (cm)	Grain Yield (kg/ha)	Straw Yield (kg/ha)
Karjat - 4	77.2	18.3	16.3	20.6	2810	3290
Karjat-7	97.4	22.8	21.2	21.4	3530	4130
Ratnagiri-1	103.7	15.3	14.1	22.2	3970	4650
Sahyadri-4	104.5	15.7	14.1	28.2	4630	5410
Karjat-5	113.0	15.4	13.5	26.2	3590	4200
Karjat-6	98.1	16.2	14.4	19.6	3410	3990
Palghar-1	88.2	14.1	12.3	26.5	3620	4230
Sahyadri-3	118.0	18.8	16.3	27.7	4690	5480
Ratnagiri-2	107.4	14.4	12.9	25.3	3610	4220
Ratnagiri-3	102.9	15.6	13.8	23.1	3620	4240
Karjat-8	113.3	18.3	16.6	22.6	3520	4120
Sahyadri-5	102.4	21.8	20.1	27.3	4710	5510
Karjat-3	98.1	19.9	18.2	23.5	3980	4660
Jaya	106.4	14.6	13.1	20.5	3990	4670
Karjat-2	98.5	15.7	14.1	20.9	3610	4220
SEm <u>+</u>	0.83	0.53	0.53	0.40	70	81
CD(p=0.05)	2.59	1.65	1.66	1.26	217	253

Table 7.2.27. Performance of different rice varieties under organic management practices at Karjat

Groundnut varieties/hybrids	Plant height(cm)	Dry pods yield (kg/ ha)	Haulm yield (kg/ ha)
Phule-6021	39.0	1892	3027
SB XI	36.4	1612	2580
Western-44	38.0	1624	2598
Western-66	42.3	1754	2806
TAG-24	30.8	1886	3017
TKG-Bold	41.0	2211	3538
Kopergaon-1	36.4	1883	3013
PhulePragati (JL-24)	27.8	1922	3075
JL-220	46.2	2187	3499
JL-776	45.4	2229	3566
JL-501	35.1	1680	2688
TG-37 A	43.7	1955	3129
TG-26	35.2	2296	3673
KonkanGaurav	35.1	2274	3638
RHRG-6083	47.0	2320	3713
SEm <u>+</u>	0.68	26	41
CD(p=0.05)	2.13	80	127

Table 7.2.28. Performance of different groundnut varieties under organic management practices at Karjat

 Table 7.2.29. Rice equivalent yield in term of system equivalent yield and economics of rice-ground system under organic management at Karjat

Rice	Groundnut	SEY (kg/ha)	Gross returns (Rs./ha)	Net returns (Rs./ha)	NRPRI* ratio
Karjat - 4	Phule-6021	15190	205047	47682	1.30
Karjat-7	SB XI	14620	197328	39963	1.25
Ratnagiri-1	Western-44	15330	206968	49603	1.32
Sahyadri-4	Western-66	17050	230141	72776	1.46
Karjat-5	TAG-24	16300	220050	62685	1.40
Karjat-6	TKG-Bold	17940	242187	84822	1.54
Palghar-1	Kopergaon-1	16320	220360	62995	1.40
Sahyadri-3	PhulePragati (JL-24)	18120	244575	87210	1.55
Ratnagiri-2	JL-220	18090	244225	86860	1.55
Ratnagiri-3	JL-776	18350	247767	90402	1.57
Karjat-8	JL-501	14990	202376	45011	1.29
Sahyadri-5	TG-37 A	18350	247729	90364	1.57
Karjat-3	TG-26	19270	260162	102797	1.65
Jaya	KonkanGaurav	19160	258622	101257	1.64
Karjat-2	RHRG-6083	18870	254784	97419	1.62
SEm <u>+</u>		200	2640	2640	0.02
CD(p=0.05)		610	8213	8213	0.05

* Net return per rupees invested

recorded by Karjat-4 (2810 kg/ha). Significantly higher panicle length (28.2 cm) was recorded with Sahyadri-4 while maximum plant height of 118.0 cm was observed with Sahyadri-3.

Ground nut (Table 7.2.28): Groundnut variety,RHRG-6083 produced maximum and significantly higher plant height (47cm), dry pods yield (2320 kg/ha) and haulm weight (3713 kg/ha) over rest of the varieties except TG-26 and Konkangaurav. Lowest plant height was observed in PhulePragati (JL-24) of 27.8 cm and dry pod yield in Western-44 (1612 kg/ha).

Performance of groundnut varieties under organic management at Karjat

System equivalent yield and economics (Table

7.2.29): Rice variety Karjat-3 grown during *kharif*

and groundnut variety TG-26 grown after harvest of karjat–3 recorded maximum and significantly higher system equivalent yield (REY 19270 kg/ha), net return (Rs. 102797/ha) and net return per Rs. invested (1.65) compared to other varieties evaluated in the system. Lowest system equivalent yield was recorded by rice (Karjat-7)-groundnut (SBXI) of (14620 kg/ha).

Ludhiana (Table 7.2.30 to 7.2.31)

Ten genotypes of rice and twelve genotypes of wheat were studied in RBD design with three replications for rice-wheat system. All the varieties of rice and wheat were grown under similar nutrient source and doses.

Basmati rice (Table 7.2.30): Basmati rice variety Punjab basmati 2 achieved significantly higher plant height (149.1 cm) followed by UPR 3560 (134.0 cm) which was significantly higher than all the other varieties.Lowest plant height was recorded by Pusa Punjab Basmati 1509 (90.1 cm). Among the rice varieties maximum panicle length was recorded in UPR 3560 27.7 cm and lowest was in Ent 6001 (21.4

Evaluation of rice varieties under organic management at Ludhiana

Performance of wheat varieties under organic management at Ludhiana

Rice varieties/ hybrids	Plant height (cm)	Panicle length (cm)	No. of effective tillers /m ²	No. of grain/ panicle	1000 grain wt. (g)	Grain yield (kg/ha)	Straw yield (kg/ha)	Harvest Index
Punjab Basmati 2	149.1	25.1	261	59.1	24.7	3307	5833	0.36
Pusa Punjab Basmati 1509	90.1	24.7	168	62.1	29.8	2307	5470	0.30
Pusa Basmati 1121	121.2	22.9	283	55.2	27.8	4593	6540	0.41
Pusa 1592	104.6	23.8	287	87.4	25.9	5217	6930	0.43
Pusa 1612	113.4	27.1	270	87.8	28.8	5367	7960	0.40
CR-2007	118.7	25.3	281	68.0	29.3	4773	5410	0.47
Ent 6001	116.3	21.4	303	52.0	26.9	3720	5830	0.39
Ent 6002	116.4	22.4	321	61.4	24.8	4090	4550	0.47
UPR 3560	134.0	27.7	273	87.1	24.9	5007	6077	0.45
Punjab Basmati 3	120.3	23.6	260	61.6	22.5	3227	5293	0.38
CD (P=0.05)	5.9	2.0	52.0	18.0	NS	1020	1980	

Table 7.2.30. Yield attributes, yield and harvest index of basmati rice at Ludhiana

Table 7.2.31. Yield attributes, yield and harvest index of wheat at Ludhiana
--

Wheat varieties/ hybrids	Plant height (cm)	Panicle length (cm)	No. of effective tillers /m ²	No. of grain/ panicle	1000 grain wt. (g)	Grain yield (kg/ha)	Straw yield (kg/ha)	Harvest Index
PBW 702	91.4	6.7	26.4	346.0	39.5	3487	4180	0.46
PBW 706	90.8	7.9	32.6	289.9	43.8	3800	4420	0.46
PBW 621	89.3	7.2	34.5	323.3	39.5	4317	5183	0.45
PBW 644	90.5	8.7	33.4	272.2	42.8	3620	4243	0.46
PBW 175	96.3	6.7	20.7	351.1	42.3	3160	3957	0.44
BWL-1761	107.1	7.4	21.1	358.0	35.9	2410	4033	0.37
BWL -0134	95.7	7.8	36.1	360.0	44.5	4773	5230	0.48
BWL-1940	88.5	7.8	34.9	296.6	42.2	4477	5300	0.46
BWL-2756	84.5	8.9	34.1	244.4	47.0	3797	4800	0.44
BWL- 720	96.8	7.7	36.7	314.4	39.8	4417	5207	0.46
C 306	113.1	7.1	27.9	277.8	42.9	3047	4510	0.40
PBW 660	95.7	7.1	36.4	287.7	41.1	4023	4977	0.45
CD (P=0.05)	6.8	NS	1.1	9.3	NS	7.8	NS	NS

cm).The maximum nos. of grain/panicle was recorded with Pusa 1612 (87.8) whereas Pusa Punjab Basmati 1509 recorded highest 1000 grains weight (29.8 g). Grain yield of rice varied from 2310-5370 kg/ ha with a maximum variation of 113%. Basmati rice variety Pusa 1612 out performed and observed significantly higher grain yield of 5367 kg/ha closely followed by Pusa-1592 (5247 kg/ha) while, Pusa Punjab Basmati-1509 recorded lowest grain yield (2307 kg/ha). Straw yield also follow similar trend.

Wheat (Table 7.2.31): Higher plant height of wheat (113.1 cm) was observed in C 306 which was significantly higher than all the other wheat varieties except BWL-1761 which was statistically at par. Lowest plant height was in BWL-2756 (84.5 cm). Thousand grains weight, straw yield and harvest index did not differ significantly among the different varieties. Wheat grain yield varied from 2410-4770 kg/ha among different varieties. The highest grain yield (4770 kg/ha) was observed in BWL -0134 and it was significantly higher than the other varieties of wheat except BWL-1940, BWL- 720, PBW 621 and PBW 660 which were statistically at par. The lowest grain yield was recorded with BWL-1761 (2410 kg/ha).

Modipuram (Table 7.2.32 to 7.2.33)

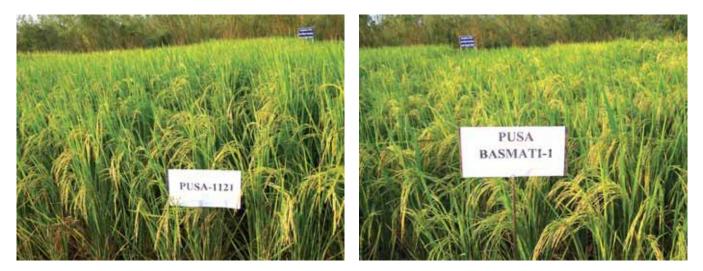
Twelve promising varieties of maize and mustard were evaluated underorganic management in a randomized block design (RBD) during kharif and rabi season of 2013-14 in system mode grown under similar nutrient source and doses.

Maize (Table 7.2.32): Significant differences among the varieties for the entire traits was observed except cobs/plant and harvest index. Though the variety Bio-9637 recorded the highest plant height (245 cm), it

Varietal evaluation of maize under organic management at Modipuram

was found to be statistically at par with PMH-4 (243 cm). Among the varieties, cob length of maize varied from 14.0 – 19.0 cm in which, PMH -5 recorded maximum and Vivek hybrid- 9 recorded minimum. Grain yield, straw yield, gross return, net returns and net return per rupee invested (6170, 8680 kg/ha, Rs.115977/ ha, Rs.76552/ha and1.94 respectively) was recorded significantly higher with PMH-3 than all the other varieties except PMH-4 which was statistically at par.The lowest grain yield, straw yield, gross return, net returns and net return by Vivek QPM- 9 (3330, 5040kg/ha, Rs.62623/ha, Rs.23198/ha and 0.59 respectively).

Mustard (Table 7.2.33): The differences for all measured variable among the wheat varieties was observed to be significant for mustard. Among the varieties maximum plant height was recorded with RGN-48 but statistically at par with RH- 0406, RGN- 229 and Urvashi. Maximum branches/plant was observed with Pusa Mustard-25 (5.5) while nos. of sympodia was higher with NRCHB- 506 (21.4). Nos. of siliqua/plant and grains/siliqua was found to be significantly higher with Pusa Mustard-25 (299 and 17.4 respectively). Among the mustard varieties significantly higher grain yield was recorded with RGN-48 (1970 kg/ha) and it was statistically at par with RH- 0406, Pusa Bold and Pusa Mustard-26 (1950, 1910 and 1910 kg/ha respectively). Variety Pusa Mustard-25 gave minimum yield of 1530 kg/ha. Maximum gross return net return and net return per rupee invested was recorded by Urvashi (Rs./ha 73800, 38930 and 1.12). DRMRIJ-31, NRCHB- 101 and Pusa Mustard-26 also gave good returns and net return per rupee invested than the rest of other varieties.


Pantnagar (Table 7.2.34 to 7.2.35)

Seven coarse varieties of rice and seven basmati rice varieties (total 14) were evaluated during *kharif* and fourteen varieties of wheat in *rabi* were grown under similar organic nutrient source and doses for their performance under organic management.

Maize varieties/ hybrids	Plant height (cm)	No. of cobs/ plant	Cob length (cm)	1000 grain weight (g)	Grain yield (kg/ha)	Straw yield (kg/ha)		Harvest Index	Gross return (Rs/ha)	Cost of cultivation (Rs/ha)	f Net on Returns) (Rs/ha)		Net return per rupee invested
Prakash	183	1.4	15.8	244.5	5170	7930		0.40	97177	39425	57752	5	1.46
Seed tech- 2324	217	1.2	17.0	348.4	5330	8140		0.40	100260	39425	60835	5 2	1.54
PMH -1	237	1.2	17.4	266.2	5010	7390		0.40	94194	39425	54769	6	1.39
PMH -3	194	1.6	17.6	243.3	6170	8680		0.42	115977	39425	76552	2	1.94
PMH -4	243	1.4	18.0	307.5	6000	8470		0.42	112819	39425	73394	4	1.86
PMH -5	205	1.4	19.0	263.5	5330	8190		0.39	100260	39425	60835	5 2	1.54
HQPM-5	225	1.2	15.6	291.7	4330	6710		0.39	81460	39425	42035	5 2	1.07
HQPM-1	215	1.4	16.2	229.2	4170	6470		0.39	78340	39425	38915	5	0.99
Bio- 9681	240	1.6	16.0	259.4	5170	7550		0.41	97177	39425	57752	2	1.46
Bio- 9637	245	1.4	17.2	301.6	4830	6670		0.42	90823	39425	51398	8	1.30
Vivek hybrid- 9	196	1.2	14.0	242.0	4330	6740		0.39	81423	39425	41998	8	1.07
Vivek QPM- 9	192	1.2	15.6	237.0	3330	5040		0.40	62623	39425	23198	8	0.59
Table 7.2.33. Yield attributes, vield and harvest index economics of mustard varieties under organic management at Modipuram	tributes, vie	eld and harv	rest index ec	onomics of	mustard va	rieties unc	der orgar	lic manag	ement at N	Aodipuram			
	i		•		•				:			:	
Mustard varieties/ hybrids	Plant height (cm)	Branches/ plant	No. of sympodia/ plant	No. of siliqua/ plant	No. of grains/ siliqua v	1000 S grain y wt. (g) (k	Seed yield (kg/ha)	Stover yield (kg/ha)	Harvest Index	Gross return (Rs/ha)	Cost of cultivation (Rs/ha)	Net Returns (Rs/ha)	B:C ratio
DRMRIJ- 31	146	3.8	10.5	181	17.4	6.9 1	1530	6550	18.9	57425	34870	22555	0.65
NRCDR- 02	143	3.4	15.0	245	13.6	5.9 1	1750	6000	22.6	65663	34870	30793	0.88
NRCHB- 101	144	4.1	14.0	283	13.0	5.3 1	1650	5540	22.9	61888	34870	27018	0.77
NRCHB- 506	153	4.8	18.4	270	14.0	5.1 1	1910	7170	21.0	71500	34870	36630	1.05
Pusa Mustard-25 (NPJ-112)	133	5.8	21.4	227	15.4	4.2	1650	5460	23.2	61913	34870	27043	0.78
Pusa Mustard-26 (NPJ-113)	143	5.8	16.8	236	15.2	4.8	1670	5520	23.2	62550	34870	27680	0.79
PusaTarak	144	4.2	20.8	228	12.4	5.8 1	1570	5850	21.2	58875	34870	24005	0.69
RH- 0406	167	4.8	14.8	212	17.0	5.6 1	1950	6800	22.3	73138	34870	38268	1.10
RGN- 229	164	4.8	20.6	273	15.2	5.2 1	1970	7370	21.1	73800	34870	38930	1.12
RGN- 48	171	5.0	18.2	232	14.8	6.0 1	1830	6840	21.1	68675	34870	33805	0.97
Urvashi	162	4.6	17.2	253	14.8	5.5 1	1910	7340	20.6	71563	34870	36693	1.05
Pusa Bold	157	5.6	18.2	299	17.2	6.4 1	1870	7800	19.3	70050	34870	35180	1.01
110 0 100													

CD (p=0.05) Pusa Bold Urvashi

Network Project on Organic Farming

Performance of PUSA-1121 under organic management

Performance of PUSA BASMATI-1 under organic management

Wheat performance UP-2784 under organic management at Pantnagar

Performance of PANT DHAN-18 under organic management at Pantnagar

Rice (Table 7.2.34): Plant height at harvest, effective tillers/m², number of grains/panicle and weight of grains per panicle showed significant variation among different rice varieties. Plant height at harvest of different coarse rice varieties ranged from 112 to 131 cm and that of fine rice varieties ranged from 119 to 141 cm. Tallest varieties reported among coarse were PD-18 and UPR-3425-1j-1-1 and fine in grain Taraori and Type-3 varieties. Number of effective tillers/m² of coarse grain varieties ranged from 277 to 337 and that of fine grain varieties from 224 to 314. Significantly higher effective tillers/m² were observed in NDR-359 and it was at par with all other varieties except PD-4, IR-64 (coarse grain) and Taraori, Type-3, Pusa basmati-1 and Pusa-1121(fine grain).

Among fine grain rice varieties, significantly higher numbers of grains/panicle were observed in Pant DRR Basmati -1(129) being *at par* with UPR-3488621(118) and UPR-3506-7-1-1(111). Among coarse grain rice varieties, significantly higher grain weight/panicle was recorded in NDR-359 (3.65 g) and among fine grain rice varieties, significantly higher grain weight/panicle was recorded in UPR-3488621(1.90 g) which was at par with Pant DRR Basmati-1(1.90 g).

Fight No. of tillers/m: Mo. of panicle Mo. of (g)	Discretization /	10010	No of	Cucion C	- inter		-i		lourset.	Total	C lotoT	Total V	C lotot
1.92 25.1 5133 5708 0.47 2.22 28.9 5265 5896 0.47 2.24 31.4 5763 5794 0.50 2.65 31.5 5388 6015 0.47 2.54 31.4 5763 5794 0.50 2.66 31.5 5327 5927 0.47 2.65 33.2 5174 6398 0.40 2.65 33.2 5174 6393 0.32 2.51 2.510 5310 0.32 1.37 2.51 2303 5633 0.30 1.37 2.5.8 3300 5633 0.30 1.37 2.5.8 3303 5633 0.30 1.37 2.4165 3300 5633 0.43 1.700 29.5 4165 5335 0.44 1.37 25.6 3333 5124 0.43 1.50 25.8 3633 5184 0.43 1.50 25.8 3676 5141 0.43 1.90 </th <th>kice varieties/ hybrids</th> <th>Plant height (cm)</th> <th>No. of effective tillers/m²</th> <th>Grains / panicle</th> <th>Grain weight / panicle (g)</th> <th>1000 grain weight (g)</th> <th>Grain yield (kg/ha)</th> <th>straw yield (kg/ha)</th> <th>Harvest Index</th> <th>l otal N uptake (kg/ha)</th> <th>lotal P uptake (kg/ha)</th> <th>l otal K uptake (kg/ha)</th> <th>lotal S uptake (kg/ha)</th>	kice varieties/ hybrids	Plant height (cm)	No. of effective tillers/m²	Grains / panicle	Grain weight / panicle (g)	1000 grain weight (g)	Grain yield (kg/ha)	straw yield (kg/ha)	Harvest Index	l otal N uptake (kg/ha)	lotal P uptake (kg/ha)	l otal K uptake (kg/ha)	lotal S uptake (kg/ha)
1.92 25.1 5133 5708 0.47 2.22 38.9 5262 5896 0.47 2.54 31.4 5763 5583 0.50 2.56 31.5 5338 5015 0.47 2.56 33.2 5173 5398 0.40 2.56 33.2 5173 5393 0.40 2.56 33.2 5124 5393 0.40 2.24 29.9 5327 0.47 3.65 22.8 5327 0.47 1.70 29.5 33.2309 5633 0.33 1.31 225.8 3303 5124 0.43 1.70 29.5 3163 5633 0.40 1.70 29.5 3303 5124 0.43 1.70 29.5 3163 55283 0.40 1.70 29.5 3303 5124 0.43 1.70 29.5 3163 5373 0.40 1.70 29.5 3303 5124 0.43 1.70 29.5 3148 5712 0.44 1.70 29.6 3373 5124 0.43 1.90 30.3 3124 0.44 0.44 1.00 91 710 710 0.33 1.10 91 710 714 0.33 1.20 3172 5853 0.44 0.44 1.10 33.48 5712 0.34 40.4 33.78 5456 0.44 <td>Coarse grain</td> <td></td>	Coarse grain												
2.2228.952625896 0.47 2.5431.457635327 0.50 2.5431.457635327 0.49 2.5533.553275927 0.41 3.6533.553275927 0.43 2.2429.953275927 0.43 3.6533.261746398 0.40 2.2429.95310 0.32 1.2522.825105633 0.37 1.3725.633005623 0.37 1.3725.633005623 0.40 1.3725.633005623 0.37 1.3725.633005623 0.37 1.5020.341655152 0.44 1.7029.541655152 0.44 1.7029.533635152 0.44 1.7029.533635152 0.44 1.60GrainStrawHarvestgrainyieldYield 0.44 91.093.45374 6.33 41.15378 6034 0.39 42.75455 0.41 0.38 42.75378 6034 0.38 42.75378 6034 0.33 41.15404 0.38 33.633.735508 0.41 38.835505299 0.39 39.438.8 3728 6034 0.39 39.453735803 <td< td=""><td>PD-4</td><td>112</td><td>277</td><td>93</td><td>1.92</td><td>25.1</td><td>5133</td><td>5708</td><td>0.47</td><td>96.5</td><td>23.2</td><td>118.0</td><td>19.7</td></td<>	PD-4	112	277	93	1.92	25.1	5133	5708	0.47	96.5	23.2	118.0	19.7
2.9332.1584558890.502.5431.4576357940.502.5533.557940.473.6533.557930.492.2429.9532759270.472.5533.5579956930.331.3125.6303356930.331.3125.6303356930.341.3725.6303356930.401.3725.6393351240.431.7029.5416553560.441.7029.5416553560.441.7029.5416553560.441.7029.5416553560.441.7029.5416553560.441.7029.5416553560.441.7029.5393351240.431.7029.6393351240.431.7029.6393351240.431.7029.6393351240.431.9030.3372758590.441.1006rainYieldYieldNorest1.100210060153140.431.1002107120.331.10152980.441.10151440.3337.6372860340.3338.8355052990.4438.438.456510.4439.4 </td <td>IR-64</td> <td>121</td> <td>296</td> <td>63</td> <td>2.22</td> <td>28.9</td> <td>5262</td> <td>5896</td> <td>0.47</td> <td>89.6</td> <td>23.6</td> <td>106.7</td> <td>9.2</td>	IR-64	121	296	63	2.22	28.9	5262	5896	0.47	89.6	23.6	106.7	9.2
2.54 31.4 5763 5794 0.40 3.65 33.5 6538 6015 0.47 3.65 33.5 6538 6015 0.47 3.65 33.5 6714 6398 0.49 3.65 33.5 6715 0.47 3.65 33.2 5710 5310 0.33 1.31 24.7 2799 5623 0.43 1.37 25.6 3303 5124 0.43 1.70 29.5 4165 5356 0.44 1.70 29.5 3333 5124 0.43 1.70 29.5 3933 5124 0.43 1.70 29.6 3933 5124 0.43 1.70 29.6 3933 5124 0.43 1.90 30.3 3933 5124 0.43 1.90 30.3 3933 5124 0.43 1.90 26.6 3933 5124 0.43 1.90 28.14 Kg/ha) Kg/ha) Kg/ha) 144 <	PUSA-44	117	334	153	2.93	32.1	5845	5889	0.50	89.7	29.6	119.9	17.4
2.50 31.2 5327 5927 0.44 2.24 29.9 5327 5927 0.44 2.51 24.7 2799 5693 0.33 1.31 24.7 2799 5693 0.33 1.37 25.6 3300 5633 0.33 1.37 25.6 3300 5633 0.33 1.37 25.6 3300 5633 0.44 1.50 20.5 4165 5536 0.44 1.50 20.6 3933 5124 0.43 1.50 20.6 3933 5124 0.43 1.50 20.6 3933 5124 0.43 1.50 20.6 3933 5124 0.43 1.50 20.6 3933 5124 0.43 1.50 20.6 44.65 0.43 0.43 90 91 Yield Yield 1.44 91 91 Yield Yield 0.43 92 3374 5455 0.41 0.33		1.01	1.0.0	100	40.7	4. L 0 4. L 0	20/03	57.94 1	000	0.1.0 0.00	24.0	120.0	0.41
3.2.4 3.3.7 5.3.7 5.3.7 0.4.4 1.25 22.8 24.7 27.99 56.93 0.33 1.31 24.7 27.99 56.93 0.33 1.37 25.6 3300 56.23 0.44 1.50 29.5 4165 55.356 0.44 1.50 29.5 4165 55.356 0.44 1.50 29.5 3135 5152 0.43 1.50 29.5 3135 5152 0.44 1.50 29.5 3933 5124 0.43 1.50 29.6 3933 5124 0.43 1.50 29.6 3933 5124 0.43 1.50 29.6 3933 5124 0.43 1.50 28.6 3933 5124 0.43 9.15 1.60 7.47 7.41 7.43 9.15 0.64 7.44 7.44 7.41 9.1 1000 Grain Xield 0.43 9.1 41.1 5298 0.41		0 1	517	154	2.0U	0.1.0 0.00	0300 6474	0010	0.47	90.0 105.0	5.07 0.4 0	C.UZI	10.0
1.2522.8251053100.321.31 24.7 2799 56930.331.37 25.6 3300 56230.441.50 29.5 4165 553560.441.50 29.5 4165 553560.441.90 30.3 4185 51520.431.50 20.6 3933 5124 0.431.50 20.6 3933 5124 0.431.50 20.6 3933 5124 0.431.90 20.6 3933 5124 0.431.90 29.6 3933 5124 0.431.50 23.6 3333 5124 0.431000 $6rain$ $8raw$ $Harvest$ grainyieldYieldYield41.2 3727 5859 0.4442.6 3373 5712 0.3342.6 3374 5712 0.3342.7 4101 5298 0.4443.0 3373 5712 0.3344.2 3778 4963 0.4338.8 3550 5299 0.4138.8 3550 5299 0.4038.4 3804 5626 0.40 41.1 3738 5626 0.40 41.17 3738 5626 0.40 41.7 3738 5626 0.40	UPR-3425-11-1-1	131	328	96	2.24	29.9 29.9	5327	5927	0.47	99.0	24.6 24.6	128.7	13.6
1.2522.8251053100.331.3724.7279953100.331.3725.6330056230.341.5029.5416553560.441.7029.5418551520.441.9030.3418551520.431.5026.6393351240.431.5026.6393351240.431.5026.6393351240.431.5026.6393351240.431.5026.6393351240.431.5026.6393351240.431.5026.6393351240.431.5026.6393351240.431.5026.6393351240.431.5026.6393351240.431.5026.6337478490.431.000GrainStrawHarvestgrainyieldYield0.4340.4337458590.4141.2377854550.4139.6372856030.3638.8355052990.4039.4380456210.4039.4380456210.4039.4380456260.4041.1349960070.3741.7373856260.4039.456260.4039.456260.40 <tr< td=""><td>Fine orain</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>	Fine orain												
1.25 22.8 2510 5310 0.32 1.31 24.7 2799 5693 0.33 1.37 25.6 3300 5623 0.44 1.50 25.8 30.3 4165 5536 0.44 1.70 29.5 4165 5356 0.44 1.70 26.6 3933 5124 0.43 1.90 30.3 4185 5152 0.44 1.90 26.6 3933 5124 0.43 1.90 26.6 3933 5124 0.43 1.50 26.6 3933 5124 0.43 1.90 Grain Straw Harvest yeight (kg/ha) (kg/ha) 0.43 9.1 3374 5404 0.38 42.6 3374 5404 0.33 42.7 41.01 5298 0.44 43.0 3378 5712 0.33 44.2 3778 5495 0.43 38.6 3728 5603 0.36													
1.3124.021.930.0331.3725.6330056230.341.5029.5416553560.441.9030.3418551520.441.9030.3418551520.441.9026.6393351240.431.9026.6393351240.431.9026.6393351240.431.9026.6393351240.431.90 FrawHarvestHarvest grainyieldYield1000(g)(kg/ha)(hg/ha)0.4341.2372758590.3942.6337454040.3842.7410152980.4443.0334857120.3744.2372860340.3344.2372854040.3837.6372856030.3738.940.4551410.4438.937652990.4139.438.956260.4139.4380456210.3741.1349960070.3741.7373856260.4041.7373856260.40	Taraori	141	224	75	1.25	22.8	2510	5310	0.32	54.0	15.4	80.8 7	15.4 15.4
1.37 23.56 3363 5283 0.040 1.70 25.8 3563 5356 0.44 1.70 20.3 4165 5152 0.44 1.90 30.3 4185 5152 0.44 1.90 30.3 4185 5152 0.44 1.90 26.6 3933 5124 0.43 Kuptake of wheat varieties influenced by organic man vield Yield Harvest grain yield Yield 1000 67 0.90 Gain Straw Harvest 0.43 40.4 3374 5859 0.39 0.43 42.6 3576 4840 0.43 0.43 42.7 4101 5298 0.41 0.38 42.8 37.6 3374 5455 0.41 0.37 39.6 3373 5803 0.37 0.43 0.43 41.1 38.8 3550 5299 0.41 0.38 39.4 38.8 3727 5455 0.41 0.43 39.4 </td <td>lype-3</td> <td>4 0</td> <td>703</td> <td>000</td> <td>1.0.1</td> <td>24.7</td> <td>6672</td> <td>2000</td> <td>0.00</td> <td>04.Z</td> <td>0.00</td> <td>00.0 0</td> <td></td>	lype-3	4 0	703	000	1.0.1	24.7	6672	2000	0.00	04.Z	0.00	00.0 0	
1.70 29.5 3933 5124 0.44 1.50 29.5 4165 5356 0.44 1.50 20.3 4185 5152 0.44 1.50 20.5 3933 5124 0.43 Kuptake of wheat varieties influenced by organic man yield Yield 0.43 1000 Grain Straw Harvest 0.43 yield Yield Ng/ha) Ng/ha) 0.44 40.4 3374 5404 0.38 0.43 42.6 3576 4840 0.43 44.4 42.7 4101 5298 0.41 0.38 42.6 3374 5465 0.41 0.38 42.7 44.2 3778 4963 0.43 42.8 3778 5455 0.41 0.38 39.6 3373 5803 0.33 0.37 38.8 3373 5803 0.37 38 38.9 40.45 5141 0.40 37 39.4 3804 5651 <t< td=""><td>Pusa basmati-1</td><td>121</td><td>117</td><td>207 202</td><td>1.57</td><td>0.02</td><td>33UU 2562</td><td>2023</td><td>0.37</td><td>0.70</td><td>20.07 20.07</td><td>40.0 102 1</td><td>4.04</td></t<>	Pusa basmati-1	121	117	207 202	1.57	0.02	33UU 2562	2023	0.37	0.70	20.07 20.07	40.0 102 1	4.04
1.90 23.3 4185 5122 0.444 1.50 26.6 3933 5124 0.434 Kuptake of wheat varieties influenced by organic manulation 9185 5122 0.444 1000 Grain Straw Harvest yield Yield Nield Nield 0.43 40.4 3374 5859 0.39 0.43 42.6 3576 4840 0.43 0.43 42.7 4101 5298 0.41 0.38 42.8 3374 5404 0.38 0.43 42.6 3374 5463 0.41 0.38 42.7 4101 5298 0.41 0.38 42.8 37.8 5803 0.37 0.43 39.6 3727 5455 0.41 0.38 38.9 40.45 5141 0.44 0.38 38.9 37.6 5299 0.40 0.41 38.8 3550 5299 0.40 0.40 39.4 3804 5651 0.40 0.4	Dont DDD Docmoti		0/2	001	02.1	0.02 70.6	0000 1165	2203	0.40	04.0	10.4	100.4	10.0 7
1.50 26.6 3933 5124 0.43 K uptake of wheat varieties influenced by organic man vield Yield Narvest 0.43 1000 Grain Straw Harvest 0.43 veight (kg/ha) (kg/ha) 0.43 41.2 3727 5859 0.39 42.6 3576 4840 0.43 42.6 3374 5404 0.38 42.7 4101 5298 0.41 42.8 3576 4840 0.43 42.6 3576 4840 0.43 42.7 4101 5298 0.41 43.0 3728 6034 0.38 39.6 3728 6034 0.38 38.9 4045 5141 0.40 38.9 3750 5299 0.40 38.9 3650 5299 0.40 39.4 3804 5651 0.40 41.1 3499 6007 0.37 41.1 3738 5626 0.40 41.1 37			0 7 7	118	00.1	20.0	192	5150	t	0.10	0.44	0.71	с
K uptake of wheat varieties influenced by organic man K uptake of wheat varieties influenced by organic man 1000 Grain Straw Harvest 1000 Grain Straw Harvest grain yield Yield Index weight (kg/ha) (kg/ha) 0.39 41.2 3776 5859 0.39 42.6 3576 4840 0.43 42.7 4101 5298 0.41 42.8 3374 5404 0.38 42.7 4101 5298 0.41 43.0 3374 5405 0.31 44.2 3778 4963 0.43 39.6 3727 5455 0.41 38.9 4045 5141 0.44 38.9 3750 5299 0.40 38.8 3550 5299 0.40 39.4 3804 5651 0.40 41.1 3499 6007 0.37 41.1 3738 5626 0.	UFR-3506-7-1-1	137	309	111	1.50	20.3	3933	5124	0.44	74.9	24.4	97.9	13.4
K uptake of wheat varieties influenced by organic man grain 1000 Grain grain Straw Harvest grain Jooo Grain grain Straw Harvest Jac Joo Grain grain Straw Harvest Jac Vield Vield Jac 41.2 3727 5859 0.39 42.7 4101 5298 0.44 42.7 4101 5298 0.41 42.3 3374 5404 0.38 42.4 3374 5463 0.41 39.6 3728 6034 0.37 39.6 3373 5803 0.37 38.9 4045 5141 0.40 38.8 3550 5299 0.40 38.4 3804 5651 0.40 41.1 3499 6007 0.37 41.7 3738 5626 0.40 41.7 3738 5626 0.40	CD (P=0.05)	5)					-	2	-	- - -	2	-
Plant No. of height No. of spikes/ spike No. of grains/ grains/ spike No. of grains/ graina	Table 7.2.35. Yield att	ributes, yie	ld, harvest in	dex and NF	×	wheat varieti	es influence	d by organi	ic managen	nent			
height (m) spikes/ (m) grains/ grains/ grains/ grains/ grains/ grains/ (kg/ha) Vield (ha) Vield (ha) Vield (ha) No 97 277 48.5 41.2 3727 5859 0.39 86 276 48.5 41.2 3776 5869 0.39 97 311 51.5 42.7 4101 5298 0.43 97 311 51.5 42.7 4101 5298 0.43 91 329 53.9 43.0 3348 5712 0.33 91 329 54.0 44.4 37.6 44663 0.43 92 279 48.8 30.6 3728 6034 0.38 93 291 3378 5405 0.41 0.38 93 274 44.4 37.6 5405 0.41 93 279 5436 0.43 0.33 94 233 44.4 37.6 5405 0.41 100	Wheat varieties/	Plant	No. of	No. of	1000	Grain	Straw			N Uptake	P uptake	K uptake	S uptake
(cm) m ² spike veight (g/ha) (kg/ha) (kg/ha) 97 277 48.5 41.2 3727 5859 0.39 97 277 48.5 41.2 3727 5859 0.39 97 276 48.2 42.6 3576 4840 0.43 97 211 51.5 42.7 4101 5298 0.39 97 311 51.5 42.7 4101 5298 0.43 91 329 53.9 43.0 3348 5712 0.37 91 359 54.0 44.2 3778 5465 0.41 92 279 48.8 30.6 3778 5603 0.37 93 224 43.6 3373 5803 0.31 9.36 94 233 44.4 376 3373 5803 0.31 94 233 44.4 376 5745 0.41 0.44	hybrids	height	spikes/	grains/	grain	yield	Yield			(kg/ha)	(kg/ha)	(kg/ha)	(kg/ha)
97 277 48.5 41.2 3727 5859 0.39 86 276 48.2 42.6 3576 4840 0.43 87 253 46.1 40.4 3374 5404 0.38 97 311 51.5 42.7 4101 5298 0.43 91 329 53.9 43.0 3348 5712 0.37 91 329 53.9 43.0 3348 5712 0.37 91 329 53.9 43.0 3348 5712 0.37 91 329 53.9 44.2 3778 4963 0.43 92 279 48.8 40.2 3778 4963 0.43 99 279 48.8 40.2 3778 5405 0.41 99 279 48.8 30.6 3778 5465 0.41 99 221 49.8 37.6 3373 5803 0.37 98 2224 43.5 38.9 4045 5141 0.40 100 326 52.3 39.4 3804 5651 0.40 94 254 47.1 41.1 3499 6007 0.37 94 254 47.1 41.1 3738 5626 0.40 100 326 52.3 39.4 3738 5622 0.40 94 254 47.1 41.1 3738 5622 0.40 94 254		(cm)	B²	spike	weight (g)	(kg/ha)	(kg/ha)						
86 276 48.2 42.6 3576 4840 0.43 87 253 46.1 40.4 3374 5404 0.38 97 311 51.5 42.7 4101 5298 0.44 91 329 53.9 43.0 3374 5404 0.38 91 329 53.9 43.0 3348 5712 0.37 91 359 54.0 44.2 3778 4963 0.43 91 359 54.0 44.2 3778 6034 0.38 92 291 49.8 40.2 3778 6034 0.38 93 224 43.5 38.6 3778 5803 0.37 94 233 44.4 37.6 3373 5803 0.37 94 254 47.1 41.1 3499 6007 0.30 94 254 47.1 41.1 3738 5651 0.40 94 254 47.1 41.1 3799 6007 0.37 <t< td=""><td>UPD-94</td><td>97</td><td>277</td><td>48.5</td><td>41.2</td><td>3727</td><td>5859</td><td>0.39</td><td></td><td>97.9</td><td>11.3</td><td>91.1</td><td>9.3</td></t<>	UPD-94	97	277	48.5	41.2	3727	5859	0.39		97.9	11.3	91.1	9.3
87 253 46.1 40.4 3374 5404 0.38 97 311 51.5 42.7 4101 5298 0.44 91 329 53.9 43.0 3348 5712 0.37 91 359 54.0 43.0 3348 5712 0.37 91 359 54.0 44.2 3778 4963 0.43 91 359 54.0 44.2 3778 4963 0.43 92 279 48.8 40.2 3778 4963 0.43 93 279 48.8 40.2 3776 3778 6034 0.38 94 233 44.4 37.6 3373 5803 0.40 98 224 43.5 38.8 3550 5712 0.37 94 253 38.8 3550 5803 0.40 94 254 47.1 41.1 3499 6007 0.37 94 254 47.1 41.7 3738 5626 0.40 <t< td=""><td>PBW-550</td><td>86</td><td>276</td><td>48.2</td><td>42.6</td><td>3576</td><td>4840</td><td>0.43</td><td></td><td>88.9</td><td>8.7</td><td>88.7</td><td>10.1</td></t<>	PBW-550	86	276	48.2	42.6	3576	4840	0.43		88.9	8.7	88.7	10.1
97 311 51.5 42.7 4101 5298 0.44 91 329 53.9 43.0 3348 5712 0.37 91 359 53.9 43.0 3348 5712 0.37 91 359 54.0 44.2 3778 4963 0.43 91 359 54.0 44.2 3778 4963 0.43 92 279 48.8 40.2 3778 5455 0.41 93 279 48.8 30.6 3778 5603 0.33 94 233 44.4 37.6 3373 5803 0.37 98 224 43.5 38.9 4045 5141 0.40 109 267 48.2 38.8 3550 5299 0.40 100 326 52.3 39.4 4045 5651 0.40 100 326 52.3 39.4 3804 5651 0.40 94 254 47.1 41.1 3499 6007 0.37	UP-2628	87	253	46.1	40.4	3374	5404	0.38		89.4	7.9	79.3	9.8
91 329 53.9 43.0 3348 5712 0.37 91 359 54.0 44.2 3778 4963 0.43 91 359 54.0 44.2 3778 4963 0.43 99 279 48.8 40.2 3778 4963 0.43 99 291 49.8 30.6 3727 5455 0.41 99 291 49.8 30.6 3728 6034 0.38 94 233 44.4 37.6 3373 5803 0.37 98 224 43.5 38.9 4045 5141 0.40 109 267 48.2 38.8 3550 5299 0.40 100 326 52.3 39.4 3804 5651 0.40 94 254 47.1 41.1 3499 6007 0.37 102 301 50.4 41.7 3738 5626 0.40	UP-1109	97	311	51.5	42.7	4101	5298	0.44		96.6	10.4	96.2	10.0
91 359 54.0 44.2 3778 4963 0.43 99 279 48.8 40.2 3727 5455 0.41 99 291 49.8 40.2 3727 5455 0.41 99 291 49.8 39.6 3728 6034 0.38 94 233 44.4 37.6 3373 5803 0.37 98 224 43.5 38.9 4045 5141 0.44 109 267 48.2 38.8 3550 5299 0.40 100 326 52.3 39.4 3499 6007 0.37 94 254 47.1 41.1 3499 6007 0.37 102 301 50.4 41.7 3738 5626 0.40	UP-2748	91	329	53.9	43.0	3348	5712	0.37		89.2	10.0	87.6	12.2
99 279 48.8 40.2 3727 5455 0.41 99 291 49.8 39.6 3728 6034 0.38 94 233 44.4 37.6 3373 5803 0.37 98 224 43.5 38.9 4045 5141 0.44 98 224 43.5 38.9 4045 5141 0.44 109 267 48.2 38.8 3550 5299 0.40 100 326 52.3 39.4 3804 5651 0.40 94 254 47.1 41.1 3499 6007 0.37 102 301 50.4 41.7 3738 5626 0.40	UP-2843	91	359	54.0	44.2	3778	4963	0.43		93.5	9.6	87.4	11.6
99 291 49.8 39.6 3728 6034 0.38 94 233 44.4 37.6 3373 5803 0.37 98 224 43.5 38.9 4045 5141 0.44 98 224 43.5 38.9 4045 5141 0.44 109 267 48.2 38.8 3550 5299 0.40 100 326 52.3 39.4 3804 5651 0.40 94 254 47.1 41.1 3499 6007 0.37 102 301 50.4 41.7 3738 5626 0.40	UP-2841	66	279	48.8	40.2	3727	5455	0.41		98.0	9.1	92.3	9.3
94 233 44.4 37.6 3373 5803 0.37 98 224 43.5 38.9 4045 5141 0.44 109 267 48.2 38.8 3550 5299 0.40 100 326 52.3 39.4 3804 5651 0.40 100 326 52.3 39.4 3804 5651 0.40 94 254 47.1 41.1 3499 6007 0.37 102 301 50.4 41.7 3738 5626 0.40	UP-2572	66	291	49.8	39.6	3728	6034	0.38		100.9	13.3	111.9	8.2
2565 98 224 43.5 38.9 4045 5141 0.44 2967 109 267 48.2 38.8 3550 5299 0.40 2684 100 326 52.3 39.4 3804 5651 0.40 7017 94 254 47.1 41.1 3499 6007 0.37 2784 102 301 50.4 41.7 3738 5626 0.40 (P=0.05) 6005 10.40 102 301 50.4 41.7 3738 5626 0.40	DPW-62150	94	233	44.4	37.6	3373	5803	0.37	94	94.1	9.5	96.0	12.3
2967 109 267 48.2 38.8 3550 5299 0.40 2684 100 326 52.3 39.4 3804 5651 0.40 N-17 94 254 47.1 41.1 3499 6007 0.37 2784 102 301 50.4 41.7 3738 5626 0.40 (P=0.05)	UP-2565	98	224	43.5	38.9	4045	5141	0.44		106.3	8.3	85.8	11.6
2684 100 326 52.3 39.4 3804 5651 0.40 V-17 94 254 47.1 41.1 3499 6007 0.37 2784 102 301 50.4 41.7 3738 5626 0.40 (P=0.05)	HD-2967	109	267	48.2	38.8	3550	5299	0.40		84.9	10.6	98.6	10.2
N-17 94 254 47.1 41.1 3499 6007 0.37 2784 102 301 50.4 41.7 3738 5626 0.40 (P=0.05)	UP-2684	100	326	52.3	39.4	3804	5651	0.40		91.5	11.5	94.6	10.0
2784 102 301 50.4 41.7 3738 5626 0.40 (P=0.05)	DPW-17	94	254	47.1	41.1	3499	6007	0.37	10	101.7	10.8	111.4	11.5
CD (P=0.05)	UP-2784	102	301	50.4	41.7	3738	5626	0.40		4.7	9.3	103.9	9.6
	CD (P=0.05)												

Test weight of different coarse and fine grain rice varieties ranged from 25.1 to 33.2 g and from 22.8 to 30.3 g respectively. Significantly higher test weight of coarse grain rice varieties was found in NDR-359 (33.2 g) which was at par with Pusa-44 (32.1 g) and that of fine grain rice varieties, test weight was significantly higher in UPR-3488621 (30.3g) and it was at par with Pant DRR Basmati-1 (29.5g). Grain yield of coarse and fine grain varieties ranged from 5133 to 6174 kg/ha and from 2510 to 4185 kg/ha respectively. Significantly higher grain yield were observed in NDR-359 (6174 kg/ha) which was at par with all other varieties except PD-4, IR-64 (coarse grain) and Taraori, Type-3, Pusa basmati-1 and Pusa-1121(fine grain). Straw yield of coarse grain rice ranged from 5708 to 6398 kg/ha, while fine grain rice varieties ranged from 5124 to 5693 kg/ha. Non-significant differences in harvest index were observed among different coarse grain varieties as well as fine grain rice varieties.

Nitrogen uptake in coarse grain rice varieties was found to be significantly higher in NDR-359 (105.2 kg/ha) and it was at par with all the varieties except IR-64 and Pusa-44, while N uptake among fine grain rice varieties was significantly higher in Pant DRR Basmati-1(87.3 kg/ha) and at par with all other varieties except Taroari, Type-3 and Pusa Basmati-1. Phosphorus uptake by coarse grain rice varieties was found to be significantly higher in Pusa-44 (29.6 kg/ha). Potassium uptake by coarse grain rice varieties was found to be significantly higher in NDR-359 (158.1kg/ha) as compared to all other varieties, while potassium uptake among fine grain rice varieties was found to be significantly higher in NDR-359 (158.1kg/ha) as compared to all other varieties, while potassium uptake among fine grain rice varieties was found to be significantly higher in NDR-359 (158.1kg/ha).

Wheat (Table 7.2.35): Plant height at harvest of different wheat varieties ranged from 85.7 to 109.3 cm, tallest variety reported was HD-2967 (109.3 cm) followed by UP-2784 (102.3 cm). Significant differences in spikes/m² were observed and it ranged from 224 to 359. Number of grains/spike ranged from 43.5 to 54.0 among the different wheat varieties and significantly higher number of grains/spike were observed in UP-2843(54 nos.) being at par with 2748 (53.9), UP-1109 (51.5), UP-2684 (52.3). Grain weight/spike was found non-significant among different wheat varieties.

Significantly higher test weight of wheat varieties was found in UP-2843 (44.2g) which was at par with UP-2748 (43.0 g), UP-1109 (42.7g), PBW-550 (42.6g) and UP-2784(41.7g). Non-significant differences in grain yield among different wheat varieties were observed, although numerically higher grain yield were observed in UP-1109 (4101 kg/ha). Higher straw yield of wheat was recorded in UP-2572and it was at par with DPW-17, DPW-62150 and UPD-94.

Nitrogen uptake was found to be significantly higher in UP-2565 (106.4 kg/ha) and it was at par with all the varieties except PBW-550 and UP-2628 and UP-2748hoever,phosphorus uptake was found to be significantly higher in UP-2572 (13.3 kg/ha) and it was at par with UPD-94 and UP-2684. Potassium uptake was found to be significantly higher in UP-2572 (111.9 kg/ha) closely followed by DPW-62150 (12.3 kg/ha). Sulphur uptake was found to be significantly higher with PD-4 (12.3 kg/ha).

Raipur (Table 7.2.36)

Among the rice varieties grown under organic management, maximum plant height was observed in rice variety Jeeraphool (183.6 cm) while lowest was with the CR Sugandha Dhan 907 (103.3 cm). The rice variety Badshahbhog recorded the highergrain yield (3854 kg/ha) compared with rest varieties. Jaygundi,Bisni,Vishnubhog and Kubrimohar recorded yield ranging from 3636 to 3730 kg/ha. No much variation was recorded in available phosphorus in the soil whereas, maximum available N was recorded

Table r.z.vo. Nesponse of different induitorial and improved scened fice varieties under organic ramming at Narput Discursisting/ Constituent and viold attributes								transfer to the test	ine of coil	
KICE VARIETIES/		Growth and yield attributes	eld attributes			rieid (kg/na)	Cue	Chemical properties of soli	les of soll	
hybrids	Plant height (cm)	No. of tillers /hill	No. of filled grains/panicle	Panicle length (cm)	1000 grains weight (g)		Available N (kg/ha)	Available P (kg/ha)	Available K (kg/ha)	oc (%)
Badshahbhog	169.3	13.3	188.7	30.1	15.0	3854	235.6	14.1	312.3	0.63
Gopalbhog	143.6	15.0	156.7	30.8	19.2	3344	264.9	14.5	363.3	0.79
Vishnubhog	125.3	19.7	187.3	27.2	14.5	3646	271.6	14.3	364.5	0.75
Bisni	163.5	13.7	156.7	25.3	14.5	3708	259.4	13.5	389.9	0.69
Shyamajeera	175.9	18.7	147.3	31.0	13.3	1854	260.4	14.4	430.4	0.73
Jeeraphool	183.6	21.7	206.0	27.8	16.3	2948	285.4	13.5	377.0	0.75
KubriMohar	150.7	14.0	174.3	29.3	20.5	3636	228.8	14.3	457.7	0.65
TulsiManjari	141.9	14.3	150.0	29.2	13.7	2562	260.0	14.8	370.6	0.67
Jaygundi	177.1	15.7	266.0	30.4	15.8	3730	249.9	14.3	403.8	0.67
Gagabaru	181.7	19.7	156.7	29.3	15.0	2604	286.0	12.6	334.2	0.77
Sugandhmati	145.4	19.3	167.3	26.7	20.0	2583	242.8	13.3	317.8	0.62
Lalu 14	126.4	16.7	159.7	23.1	19.6	2271	260.4	14.0	450.2	0.73
Dujai	149.1	12.7	161.3	23.4	18.0	2396	260.4	13.5	315.8	0.67
Dubraj	142.9	14.0	139.0	22.0	19.5	3500	242.3	13.7	430.2	0.62
CR Sugandha Dhan 907	103.3	14.7	168.0	25.5	19.9	3250	254.1	13.6	391.7	0.60

Performance of rice varieties Badshah Bhog under organic management at Raipur

Performance of rice varieties Jeera Phool under organic management at Raipur

with Kubrimohar (228.8 kg/ha) while K was higher with (Lalu-14) rice variety. Organic carbon was observed to be higher in Gopalbhog.Since majority of traditional scented rice cultivars are long duration (up to 145 days), next cropchilliwhich was planted late failed. Hence chilli is not recommended after long duration rice.

Ranchi (Table 7.2.37 to 7.2.43)

Yield attributing characters of rice (Table 7.2.37): The rice variety Lalat recorded the maximum straw yield, effective tillers/m², panicle length, number of filled grains/panicle and straw yield. The maximum plant height was observed with rice variety Birsamati (10.60cm) compared to other varieties. However, Anjli registered highest 1000 grain weight (24.93) while, lowest test weight (20.88) was observed with Birsa vikas sugandha 1.

Yields attributing characters of wheat (Table 7.2.38): Yield attributing characters and straw yield of wheat was recorded higher with wheat variety K0307 which recorded straw yield (4816 kg/ha), effective tillers/m² of 333, spike length 10.13 cm and number of grains/spike 33.30. The maximum plant height & test weight were observed with wheat variety K9207 (101.82 cm) & WR544 (50.12 g).

Grain yield of rice, wheat and system (Table 7.2.39): The maximum grain yield of rice (3722 kg/ha) was obtained with rice variety Lalat which was significantly superior over all the other rice varieties except Birsa vikas dhan-203 (3622 kg/ha), Birsadhan-201 (3567 kg/ha) and Naveen (3404 kg/ha). The wheat variety K0307 recorded the higher wheat yield (3378 kg/ha) and rice equivalent yield of wheat crop (3942 kg/ha) which was statistically similar to Raj-4229 (3222 kg/ha), K-9107 (3156 kg/ha), GW-366 (3044 kg/ha), DBW-39 (3000 kg/ha) and BG-3 (2967 kg/ha) but shows its significant superiority over rest of the varieties. In terms of system yield of rice with, Birsadhan 201- wheat with GW-366 gave significantly higher system yield (7119 kg/ha) than rice (Birsa vikas sugandha 1) -wheat (NW 2036), rice (Birsamati) – wheat (HI 1563), rice (Akhchhai) – wheat (BG 3) and rice (Pusa sugandha) –wheat (HD 2733).

Weed dynamics (Table7.2.40): Dry matter accumulation of weeds per unit area was minimum in rice (Lalat) – wheat (DBW 14) sequence during *kharif* at 25 & 40 DAT/ DAS, while in *rabi* minimum dry matter accumulation of weeds was recorded with rice (B.V.D110) – wheat (K0307) at 25 & 40 DAT/ DAS. The

Cropping System	Effective tillers/m ²	Plant height (cm)	Panicle length (cm)	Filled grain /panicle	1000 grain weight (g)	Straw yield (q/ha)
Rice (Birsavikasdhan 203)	275.67	87.67	23.53	86.93	22.72	5814
Rice (Birsadhan 201)	274.00	80.13	21.77	83.87	23.50	5570
Rice (Birsavikassugandha 1)	247.67	103.90	20.47	76.20	20.88	5264
Rice (B.V.D110)	251.33	102.63	20.70	78.93	21.59	5399
Rice (Sahbhagi)	260.33	92.17	21.27	83.73	23.07	5604
Rice (Birsamati)	260.67	104.60	21.83	83.93	20.93	5704
Rice (Anjli)	239.33	82.33	19.83	70.93	24.93	5347
Rice (Lalat)	287.00	97.53	25.53	88.07	22.31	6161
Rice (M.T.U 10)	258.00	84.90	23.43	84.73	22.03	5378
Rice (Akhchhai)	251.00	101.60	20.17	75.40	22.43	5440
Rice (Pusasugandha)	266.33	100.37	20.90	83.67	21.02	5665
Rice (Navin)	268.67	99.23	23.43	86.07	22.23	5885
SEm <u>+</u>	12.19	3.73	0.93	4.14	0.60	195
CD (P=0.05)	35.76	10.95	2.73	12.14	1.77	573

Cropping System	Number of spikes/m ²	Plant height (cm)	Spike length (cm)	No. of grains/ spike	1000 grain weight (g)	Straw yield (q/ha)
Wheat (Raj 4250)	280	91.09	7.63	31.07	44.01	4154
Wheat (GW 366)	318	87.82	9.21	32.60	41.27	4376
Wheat (NW 2036)	295	87.09	8.33	31.80	43.43	4250
Wheat (K0307)	333	92.19	10.13	33.30	42.71	4816
Wheat (K9107)	323	101.82	8.41	31.97	42.62	4582
Wheat (HI 1563)	282	91.74	7.99	31.53	45.12	4252
Wheat (Raj 4229)	310	82.62	9.88	32.63	44.54	4478
Wheat (DBW 14)	285	70.05	8.14	31.60	43.05	4234
Wheat (WR 544)	273	95.43	8.03	28.57	50.12	4299
Wheat (BG 3)	293	86.43	9.03	30.03	47.24	4458
Wheat (HD 2733)	280	78.10	7.05	29.82	44.84	4194
Wheat (DBW 39)	300	83.11	9.15	32.30	45.76	4302
SEm <u>+</u>	13.77	3.14	0.55	0.93	1.54	185
CD (P=0.05)	40.39	9.20	1.61	2.74	4.53	543

Treatments	Rice(kg/ha)	Wheat (kg/ha)	Rice equivalent system yield(kg/ha)
Rice (Birsavikasdhan 203) - wheat (Raj 4250)	3622	2733	6811
Rice (Birsadhan 201) – wheat (GW 366)	3567	3044	7119
Rice(Birsavikassugandha 1) -wheat (NW 2036)	2667	2889	6037
Rice (B.V.D110) – wheat (K0307)	2833	3378	6774
Rice (Sahbhagi) – wheat (K9107)	3300	3156	6981
Rice (Birsamati) – wheat (HI 1563)	3089	2822	6381
Rice (Anjli) – wheat (Raj 4229)	2856	3222	6615
Rice (Lalat) – wheat (DBW 14)	3722	2756	6937
Rice (M.T.U 10) – wheat (WR 544)	3256	2844	6574
Rice (Akhchhai) – wheat (BG 3)	2900	2967	6361
Rice (Pusasugandha) –wheat (HD 2733)	3156	2733	6344
Rice (Naveen) – wheat (DBW 39)	3404	3000	6904
SEm <u>+</u>	144	146	219
CD (P=0.05)	422	430	642

Selling price of organic produce i.e. rice and wheat are Rs 15.00, Rs.17.50/kg respectively

Table 7.2.40. Dry matter accumulation of weeds (g/m ²) in rice – wheat cropping system under organic management at
Ranchi

Varieties in rice-wheat cropping system	Kharif		Rabi	
	Weed dry weight (g/m²) 25 DAT	Weed dry weight (g/m²) 40 DAT	Weed dry weight (g/m²) 25 DAS	Weed dry weight (g/m²) 40 DAS
Rice (Birsavikasdhan 203) - wheat (Raj 4250)	20.85	32.00	15.64	24.88
Rice (Birsadhan 201) – wheat (GW 366)	22.69	33.10	11.26	20.41
Rice (Birsavikassugandha 1) - wheat (NW 2036)	30.32	40.48	13.62	24.18
Rice (B.V.D110) – wheat (K0307)	29.88	39.88	9.25	16.40
Rice (Sahbhagi) – wheat (K9107)	24.45	34.78	13.31	22.31
Rice (Birsamati) – wheat (HI 1563)	25.21	35.28	14.55	24.84
Rice (Anjli) – wheat (Raj 4229)	27.69	39.48	10.67	19.23
Rice (Lalat) – wheat (DBW 14)	20.22	30.08	14.14	24.39
Rice (M.T.U 10) – wheat (WR 544)	24.89	34.94	14.41	24.52
Rice (Akhchhai) – wheat (BG 3)	27.09	38.14	12.20	21.02
Rice (Pusasugandha) - wheat (HD 2733)	25.51	36.61	18.66	25.15
Rice (Navin) – wheat (DBW 39)	24.01	33.78	11.59	20.99
SEm <u>+</u>	1.59	2.01	1.01	1.58
CD (P=0.05)	4.66	5.90	2.95	4.64

highest dry matter accumulation was recorded with rice (Birsavikassugandha 1) – wheat (NW 2036) during both the season at 25 & 40 DAT/ DAS.

Soil nutrient status (Table 7.2.41): There was improvement in soil pH, organic carbon, soil N, P & K in rice-wheat cropping system compared to initial value. Among cropping system,rice (Birsa vikas sugandha 1) – wheat (NW 2036) recorded higher available N, P & K at end of rice-wheat system cropping cycle.

Practices in rice-wheat cropping system		End c	of cropping cy	cle	
	рН	OC %	Avail. N	Avail. P	Avail.K
Rice (Birsavikasdhan 203) - wheat (Raj 4250)	6.20	0.62	249.00	37.18	200.85
Rice (Birsadhan 201) - wheat (GW 366)	6.17	0.63	249.32	37.81	200.98
Rice (Birsavikassugandha 1) - wheat (NW 2036)	6.05	0.67	262.21	42.71	220.20
Rice (B.V.D110) – wheat (K0307)	5.98	0.67	260.74	40.81	216.02
Rice (Sahbhagi) – wheat (K9107)	6.17	0.64	253.68	39.11	203.37
Rice (Birsamati) – wheat (HI 1563)	6.03	0.65	254.84	42.05	212.22
Rice (Anjli) – wheat (Raj 4229)	5.90	0.67	260.01	40.57	215.13
Rice (Lalat) – wheat (DBW 14)	6.05	0.62	247.80	36.75	199.26
Rice (M.T.U 10) – wheat (WR 544)	6.07	0.65	254.70	39.29	203.72
Rice (Akhchhai) – wheat (BG 3)	5.94	0.67	258.72	40.15	213.35
Rice (Pusasugandha) – wheat (HD 2733)	5.77	0.66	254.92	39.93	211.19
Rice (Navin) – wheat (DBW 39)	5.81	0.63	251.38	38.73	202.85
SEm <u>+</u>	0.13	0.03	6.89	1.60	8.40
CD (P=0.05)	0.38	0.10	20.22	4.70	24.65
Initial	5.5	0.42	230	32.25	162

Table 7.2.41. Soil nutrient status under different varieties of crop for organic management practices

Nutrient uptake (Table 7.2.42): Among rice varieties, Lalat recorded the highest N (98.94 kg/ha), P (22.04 kg/ha) and K (76.21 kg/ha) uptake, while in *rabi*, wheat variety K0307 registered the maximum N (74.07 kg/ha), P (15.98 kg/ha), K (69.72 kg/ha) uptake. As a sequence, Rice (B.V.D110) – wheat (K0307) registered the highest N (164.58 kg/ha) uptake as well as total NPK uptake (337.25kg/ha) of the system. The cropping sequence Rice (Birsadhan 201) – wheat (GW 366) recorded the maximum P (36.38kg/ha) uptake, while, maximum K uptake (138.58kg/ha) was observed with Rice (Lalat) – wheat (DBW 14)system.

Economics (Table 7.2.43): Rice variety Lalat resulted in significantly higher net returns (Rs. 35211/ha) & net return per rupee invested (1.32) over other varieties but it remained at par with Pusa sugandha (Rs. 34777/ha), Birsamati (33875 Rs/ha), Birsa vikas dhan 203 (33095 Rs/ha), Birsadhan 201 (Rs 31790/ha),Navin (Rs. 30551/ha) and Sahbhagi (Rs. 28542/ha). In *rabi*, wheat variety KO307 variety registered significantly more net returns (Rs. 40526/ha) & net return per rupee invested (1.11) then rest of the varieties, but remains statistically at par with Raj 4229 (Rs. 36537/ha), K9107 (Rs. 35760/ha), GW366 (33045 Rs/ha), BG3 (31990 Rs/ha) and DBW (319889 Rs/ha). In terms of system economics of rice-wheat cropping sequence Birsadhan 201 GW366 gave highest system net return (Rs. 64835/ha) & system net return per rupee invested (1.02) while, the lowest system net return (Rs. 55122/ha) & net return per rupee invested (0.87) was obtained in rice (Akhchhai) – wheat (BG 3) cropping sequence.

ieties at Ranchi	
em with different va	
e in rice-wheat syste	
s on nutrient uptak	
nanagement practice	
2.2.42. Effect of organic	
Table 7.2	

Practices in rice-wheat cropping system	ł	Kharif (Rice)			Rabi (Wheat)	neat)		System		Total
	Total N	Total P	Total K	Total N	Total P	Total K	Total N	Total P	Total K	NPK
	(kg/ha)	(kg/ha)	(kg/ha)	(kg/ha)	(kg/ha)	(kg/ha)	(kg/ha)	uptake (kg/ha)	(kg/ha)	(kg/ha)
Rice (Birsavikasdhan 203) - wheat (Raj 4250)	96.15	21.73	72.89	63.03	13.72	61.20	159.19	35.45	134.09	328.73
Rice (Birsadhan 201) - wheat (GW 366)	96.42	21.61	70.46	68.01	14.77	64.99	164.43	36.38	135.45	336.26
Rice (Birsavikassugandha 1) - wheat (NW 2036)	84.02	18.61	65.49	65.19	14.15	62.73	149.20	32.77	128.22	310.19
Rice (B.V.D110) - wheat (K0307)	90.50	19.71	67.27	74.07	15.98	69.72	164.58	35.69	136.99	337.25
Rice (Sahbhagi) – wheat (K9107)	91.90	20.90	70.32	70.69	15.15	66.88	162.59	36.05	137.20	335.85
Rice (Birsamati) – wheat (HI 1563)	93.27	20.48	70.74	64.12	13.38	62.14	157.38	33.86	132.88	324.13
Rice (Anjli) – wheat (Raj 4229)	89.77	19.80	66.96	71.40	15.12	66.48	161.17	34.93	133.44	329.54
Rice (Lalat) – wheat (DBW 14)	98.94	22.04	76.21	64.20	13.40	62.37	163.14	35.45	138.58	337.17
Rice (M.T.U 10) - wheat (WR 544)	92.02	20.91	68.27	65.45	13.93	63.38	157.47	34.84	131.66	323.97
Rice (Akhchhai) – wheat (BG 3)	91.93	20.16	68.20	67.81	14.35	65.33	159.73	34.51	133.53	327.77
Rice (Pusasugandha) – wheat (HD 2733)	93.87	20.84	70.66	63.30	13.20	61.19	157.17	34.04	131.85	323.06
Rice (Navin) – wheat (DBW 39)	96.91	21.20	72.85	67.20	14.36	64.09	164.11	35.56	136.94	336.61
SEm±	3.51	0.56	2.04	2.38	0.53	1.94	4.23	0.79	2.98	6.93
CD (P=0.05)	10.31	1.65	5.99	6.98	1.56	5.70	12.40	2.32	8.73	20.32

Table 7.2.43. Net returns and net return per rupee invested of different varieties of rice-wheat system under organic management at Ranchi

Practices in rice-wheat cropping system	Kha	rif	Ra	bi	Syst	em
	Net Returns (Rs/ha)	NRPRI	Net Returns (Rs/ha)	NRPRI	Net Returns (Rs/ha)	NRPRI
Rice (Birsa vikas dhan 203) - wheat (Raj 4250)	33095	1.24	26769	0.73	59864	0.94
Rice (Birsadhan 201) - wheat (GW 366)	31791	1.19	33045	0.90	64836	1.02
Rice (Birsa vikas sugandha 1) - wheat (NW 2036)	26443	0.99	29851	0.81	56294	0.89
Rice (B.V.D110) – wheat (K0307)	22197	0.83	40527	1.11	62724	0.99
Rice (Sahbhagi) – wheat (K9107)	28543	1.07	35761	0.98	64304	1.01
Rice (Birsamati) – wheat (HI 1563)	33876	1.27	28693	0.78	62568	0.99
Rice (Anjli) – wheat (Raj 4229)	22345	0.84	36538	1.00	58883	0.93
Rice (Lalat) - wheat (DBW 14)	35212	1.32	27458	0.75	62669	0.99
Rice (M.T.U 10) – wheat (WR 544)	27422	1.03	29255	0.80	56677	0.89
Rice (Akhchhai) – wheat (BG 3)	23133	0.87	31990	0.87	55123	0.87
Rice (Pusa sugandha) - wheat (HD 2733)	34778	1.30	26917	0.73	61695	0.97
Rice (Navin) – wheat (DBW 39)	30551	1.14	31989	0.87	62540	0.99
SEm <u>+</u>	2324	0.09	2965	0.08	3681	0.06
CD (P=0.05)	6817	0.26	8696	0.24	10796	0.17

* Net return per rupee invested

Umiam (Table 7.2.44 to 7.2.45)

Eleven varieties of maize were screened among which eight were composites, one hybrid and two were local varieties grown mostly in the region and ten varieties of frenchbean were evaluated in which 8 were improved and 2 were local varieties.

Screening of maize varieties under organic management at Umiam

Performance of tomato varieties under organic management at Umiam

Growth parameters maize and french bean (Table 7.2.44): Plant growth parameters such as plant height, cob length, cob weight were recorded. Among the varieties of Maize, plant height was highest in Local white (296.3 cm) followed by RCM 1-3 (268 cm) and RCM 75 (267 cm) whereas, QPM 9 (184 cm) recorded the shortest plants followed by DA 61-A (232.3 cm) and RCM 1-2 (243.8cm). The longest cob length was recorded in RCM 1-1 (15.3 cm) followed by DA 61-A (15.00 cm) and Vijay Composite (14.67 cm). The shortest cob length was observed in Local white (8.7 cm) followed by RCM 1-2 (10.7 cm) and Hemant which was at par with RCM 76 (12.00 cm). Cob weight was recorded the highest in DA 61-A (275.4 g) closely followed by RCM 1-3 (271.5 g) and RCM 1-2 (230.8 g) while local yellow recorded the lowest with the value of 105.8 g followed by QPM-9 (164.2 g) and Local white (167.9 g).

Variety	Plant height (cm)	Cob Length (cm)	Cob weight (g)	Green cob yield (kg/ha)	Seed yield (kg/ha)	Stover yield (kg/ha)
RCM-1-1	246.0	15.33	212.5	5790	2730	9700
RCM 1-2	243.0	10.7	230.8	3610	2490	9850
RCM-1-3	268.3	13.0	271.5	6400	3120	9750
RCM 75	267.0	14.7	202.1	6030	3290	9500
RCM 76	238.3	12.0	230.0	5120	1220	9540
Vijay composite	249.3	14.7	197.5	4700	3260	9450
Hemant	241.3	14.3	137.5	5480	2730	8810
DA 61 A	232.3	15.0	275.4	5950	3610	9760
QPM 9	184.0	12.0	164.2	4580	2230	5720
Local Yellow	245.7	13.0	105.8	3320	2420	7280
Local White	296.3	8.7	167.9	4020	2120	10210
SEm (<u>+</u>)	11.3	1.3	15.09	580	420	440
CD (P=0.05)	33.5	3.7	44.51	1710	1240	1300

Table 7.2.44.Response of different varieties of maize under organic management at Umiam

Table 7.2.45. Evaluation of different varieties of frenchbean under organic mar	agement at Umiam
---	------------------

Variety	Plant height (cm)	Pod Length (cm)	Average Pod weight (g)	Green cob yield (kg/ha)	Seed yield (kg/ha)	Stover yield (kg/ha)
RCM FB 18	254.3	15.63	7.68	4110	2210	4540
RCM FB-19	180.7	13.07	6.46	3930	2280	4390
RCM FB-37	247.0	14.21	8.71	2840	1550	4410
RCM FB 61	156.0	15.08	6.93	2140	1080	4360
RCM FB-62	244.0	12.28	6.45	2240	1150	3960
RCM FB-80	230.0	14.60	8.55	3430	2020	4140
Local 1	206.3	11.88	6.19	1530	420	4160
Local 2	146.0	16.19	7.55	2550	1400	3880
Maram	48.0	12.45	5.64	770	410	1030
Naga local	256.7	16.39	10.06	4360	2400	5220
SEm (+)	5.17	0.21	0.18	360	180	110
CD (P=0.05)	15.35	0.62	0.55	1080	530	330

In French bean, taller plant were observed with Naga Local (256.7cm) followed by RCM-FB-18 (254.3 cm) and RCM-FB-37 (247 cm). Lowest plant height was recorded in Maram (48 cm) followed by Local 3 (146 cm) and RCM-FB-61 (156 cm). In terms of pod length of different varieties, Naga local (16.39 cm) recorded the highest followed by Local-2 (16.19 cm) and RCM-FB-18 (15.63 cm) while lowest pod length was recorded in Local-1 (11.88 cm) followed by RCM-FB-62 (12.28 cm) which was closely at par with Maram (12.45 cm). Average pod weight was highest in Naga local (10.06 g) followed by RCM-FB-37 (8.71 g) and RCM-FB-80 (8.55g) while lowest average pod weight was recorded in Maram (5.64 g) followed by Local 1 (6.19 g) and RCM-FB-62 (6.45 cm) which was at par with RCM-FB-19 (6.46 cm).

Yield of maize and frenchbean (Table 7.2.45): In maize, green cob yield was highest in RCM 1-3 (6400kg/ha) followed by RCM 75 (6030kg/ha) and DA 61-A (5950kg/ha) while the lowest was recorded in the local varieties such as local yellow (3320kg/ha) and local white (4020kg/ha) and in composites, RCM 1-2 recorded the lowest seed yield (3610kg/ha). Highest stover yield was recorded in Local white (10210kg/ha) followed by RCM 1-2 (9850kg/ha) and DA-61-A (9760kg/ha) which was at par with RCM-1-3 (9750kg/ha) whereas, lowest was recorded in QPM-9 (5720kg/ha) followed by Hemant (8810kg/ha).

In frenchbean, highest green pod yield was recorded in Naga local (4360kg/ha) followed by RCM-FB-18 (4110kg/ha) and RCM-FB-19 (3930kg/ha). Lowest green yield was recorded in Maram (770kg/ha). Seed yield also shown the similar trend as in green pod which had recorded highest in Naga local (2400kg/ ha) and lowest in Maram (410kg/ha). On the other hand, stover yield was highest in Naga local (5220kg/ ha) followed by RCM-FB-18 (4540kg/ha) and RCM-FB-37 (4410kg/ha). Lowest stover yield was recorded in Maram (1030kg/ha).

Wheat varieties evaluated under organic managament at Pantnagar

7.3 Evaluation of Bio-intensive Complimentary Cropping Systems under Organic Production Systems

Objectives

- To evaluate the various land configuration and intercropping options for managing the soil nutrient and pests under organic production system
- To assess the infestation level of insect, disease and weeds under bio-intensive complimentary systems

Treatments: Four number of land configuration a method was taken up in main plot.

Land Configuration: Conventional, Furrow Irrigated Raised Bed (FIRB), Broad Bed & Furrow (BBF) and Raised & Sunken Bed (RSB)

Cropping system: Four location specific complimentary bio-intensive cropping systems were taken in Sub Plots. Experiment was conducted at Dharwad, Pantnagar and Umiam centres with 3 replications in split plot design.

Year of start: 2013-14

Results: Dharwad (Table 7.1-7.6)

Yield of economics (Table 7.3.1 and 7.3.2)

Four systems namely soybean-wheat, groundnut +cotton (2:1), green gram -sorghum and soybean + pigeon pea (2:1) were evaluated with four land geometry. Yield of all crops in cropping systems were found to be higher under broad bed and furrow with crop residue followed by broad bed and furrow method land configuration. Broad bed and furrow (BBF) method of planting and conventional flat bed (FB) method of planting with crop residue produced higher net monetary returns and higher B:C ratio (Rs. 65,212 to 69,255/ha and 3.51 to 3.59, respectively) compared to broad bed and furrow (BBF) method of planting and conventional flat bed (FB) method of planting without crop residues (Rs. 60,758 to 66,200/ha and 3.41 to 3.52, respectively). Broad bed and furrow (BBF) method of planting with or without the crop residues was found beneficial for different cropping systems (either sequence or intercropping systems) over conventional flat bed (FB) method of planting with or without crop residues. The use of crop residues as a mulch for existing crop in different cropping systems and as incorporation for succeeding crop found more beneficial under both conventional flat bed (FB) method of planting and broad bed and furrow (BBF) method of planting. Groundnut (GPBD 4) + cotton (Sahana) (2:1) intercropping system produced highest net monetary returns (Rs. 88,898/ha) compared to Greengram (DGGV 2)-sorghum (cv. M 35-1) sequence cropping system (Rs.74,230/ha), soybean (DSB 21) + pigeonpea (TS 3R) (2:1) (Rs. 50.042/ha) and soybean (cv. DSB 21)-wheat (cv. DWR 2006) sequence cropping system (Rs. 48,254/ha). Groundnut (GPBD 4) + cotton (Sahana) (2:1) intercropping system was found more beneficial and more remunerative cropping system under organic production system.

Table 7.3.1 Yield and equivalent yield of various crops in cropping system as influenced by land configuration and crop residue management under organic conditions (Dharwad)

		First cro	First crop yield (kg/ha)	g/ha)		Se	Second crop yield (kg/ha)	yield (kg	/ha)		Soyb	Soybean equivalent yield (kg/ha)	valent yi	eld (kg/	ha)
Cropping systems	Broad bed and furrow with crop residues	Broad Flat bed Broad bed with and bed and bed furrow furrow crop with residues crop	Broad and bed furrow	Flat	Mean	Broad bed and furrow with crop residues	Flat bed with bed crop residues	Broad and bed furrow	Flat	Mean	Broad bed and furrow with r crop	Flat bed with bed crop esidues	Broad and bed furrow	Flat	Mean
Soybean-wheat	1953	1841	1863	1736	1848	1711	1655	1619	1482	1617	3120	2970	2967	2746 2951	2951
Groundnut +cotton (2:1)	4257	4132	4151	3894	4109	1582	1517	1520	1376	1499	3710	3583	3596	3324	3553
Green gram -sorghum	1313	1188	1281	1167	1237	4882	4622	4648	4417	4642	6387	6020	6076	5723	6052
Soybean + pigeon pea (2:1)	1331	1227	1261	1199	1255	1917	1793	1884	1741	1834	2445	2280	2385	2216	2332
Mean	2214	2097	2139	1999		2523	2397	2418	2254		3916	3713	3756	3502	

Int (Dharwad) on pi ou o configuration hul huland influen 000 \$ diffo č Fronomire Tahle 7.3.2

Cropping	0	sross ret	Gross return (Rs./ha)	/ha)		Ö	ost of c	Cost of cultivation (Rs./ha)	on (Rs	./ha)		Net ret	Net return (Rs./ha)	./ha)			B:C ratio	atio		
systems	Broad bed and furrow with r crop residues	Flat bed with crop residues	Broad bed and furrow	Flat bed	Mean	Broad Flat Broad bed bed bed and with and furrow crop furrow with residues crop residues	Broad Flat bed bed and with urrow crop f with residues crop	Broad bed and furrow s	Flat bed	Mean	Broad bed and furrow with re crop	Flat bed with crop esidu	Broad bed and furrow es	Flat bed	Mean	Broad Flat Broad bed bed bed and with and furrow crop furrow with resi- crop dues residues	Flat Broad bed bed with and rcropfurrow dues s		Flat Mean bed	ean
Soybean-wheat	68,639	65,339	68,639 65,339 65,264 60,423 64,916 17,080 16,721 16,955 15,893 16,662	60,423	34,916	17,080	16,721	16,955	15,893	16,662	51,559 48,619 48,308 44,530 48,254	48,619	48,308	44,530	48,254	4.02 3.91		3.85	3.80 3.90	06.
Groundnut +cotton (2:1)	1,29,859 1,25,398 1,25,847 1,16,323 124357	1,25,398	1,25,847	1,16,323 1	24357	36,759	35,634	35,805	33,639	35,459	93,100	89,765 90,042		82,684	88,898	3.53	3.52	3.51	3.46 3	3.51
Green gram -sorghum 1,08,575 1,02,335 1,03,298 97,298 97298	1,08,575	1,02,335	1,03,298	97,298	97298	29,252 28,489 28,010 28,836 28,647	28,489	28,010	28,836	28,647	79,323	73,846	73,846 75,289	68,462 74,230	74,230	3.71	3.59	3.69	3.37 3.	3.59
Soybean + pigeon pea 78,247 (2:1)		72,961	76,305	70,921 74,609		25,210 24,345 25,145 23,565 24,566	24,345	25,145	23,565	24,566	53,037	48,616	48,616 51,160 47,356 50,042	47,356	50,042	3.10	3.00	3.03	3.01 3	3.04
Mean	96,330	91,508	92,679	86,241		27,075	26,297	26,479	25,483		69,255	65,212	65,212 66,200	60,758		3.59	3.51	3.52	3.41	

Physical and chemical properties of soil (Table 7.3.3 to 7.3.4)

Soil physical (bulk density and maximum water holding capacity) and chemical (pH, Electrical conductivity and organic carbon content) properties were not significantly influenced by different cropping systems under various land configuration and residues management. Similarly, forms of nitrogen (ammonical, nitrate and available) phosphorus (saloid-P, aluminium-P, iron-P, calcium-P occluded-P and total-P) and available potassium and DTPA-extractable micronutrients content of soil were also not influenced significantly due to various cropping systems under different land configuration and residues management practices. The reduction in bulk density (1.20 mg/m³) was found in broad bed and furrow method of planting with crop residues and maximum water holding capacity (64.42 %) was higher in conventional flat bed method of planting in addition to crop residues. Organic carbon content in the soil was found highest in conventional flat bed method of planting with crop residues (.64%). Residual nutrient of N, P and K (280, 31 and 354 kg/ha respectively) were more in broad bed and furrow method of planting with residues at time of harvest of kharif crops. DTPA extractable micronutrient status such as copper (1.59 mg/kg), Iron (10.07 mg/kg), Manganese (11.59 mg/kg) and Zinc (0.95 mg/kg) were found highest in broad bed and furrow method of planting. In case of total carbon content and nitrogen fractions, ammonical-N, nitrite-N and total-N were maximum in broad bed and furrow method of planting. Whereas, phosphorous fractions such as Saloid-P, AI-P, Ca-P, Fe-P, Occluded-P and total P did not vary significantly due to the different land configuration and cropping systems.

Natural enemies and incidence of insects (Table7.3.5)

Significantly lower pod borer incidence and higher natural enemies and spider population were recorded in broad bed and furrow method of planting with crop residues followed by conventional flatbed (FB) method of planting with crop residues. Non-significant differences were noticed with respect to gall weevil incidence in soybean + pigeonpea (2:1). Significantly higher incidence of defoliators and pod borers were noticed in broad bed and furrow method of planting with crop residues. Significantly higher incidence of cadavars, *coccinellids* and spider population was recorded in broad bed and furrow method of planting with crop residues. Significantly higher incidence of planting with crop residues. Significantly higher incidence of planting with crop residues.

Beneficial microorganism (Table 7.3.6)

Significantly higher microbial populations were observed in all the cropping systems under broad bed and furrow method of planting with crop residues. Similar trend was also observed with respect of nodule number and nodule weight. Higher microbial activity was also seen in conventional flat bed method of planting in with crop residues compared to the same method without crop residues.

Incidence of diseases (Table 7.3.7)

In soybean-wheat sequence cropping and soybean + pigeonpea (2:1) intercropping systems, lowest soybean rust incidence was noticed in conventional flat bed method of planting without crop residues and broad bed and furrow method of planting with crop residues, respectively. In greengram-sorghum system, lowest incidence of *Cercospora* leaf spot of greengram and powdery mildew were noticed in broad bed and furrow method of planting in addition to crop residues and conventional flat bed method of planting without crop residues, respectively.

agement (Dharwad)	
n and crop residue man	
and configuration ar	
as influenced by la	
chemical properties	
Soil physical and c	
ole 7.3.3 S	

Cropping		Bulk de	Bulk density (g/cc)	c)				Ηd			Elec	trical co	Electrical conductivity (dS/m)	ty (dS/m	(Org	Janic ci	Organic carbon (%)	(%	
systems	Broad bed and furrow with r crop	Broad Flat bed bed and with urrow crop with residues crop	Broad bed and furrow	Flat bed	Mean	Broad bed and furrow with re crop	Flat bed with crop ssidue	Broad bed and furrow s	Flat bed	Mean	Broad bed and furrow with re crop	Broad Flat bed bed and with urrow crop f with residues crop	Broad bed and furrow s	Flat bed	Mean f	Broad Flat Broad bed bed bed and with and furrow crop furrow with resi- crop dues residues	Flat bed with crop f esi- lues		Flat N bed	Mean
Soybean-wheat	1.26	1.26	1.21	1.18	1.23	7.55	7.46	7.32	7.46	7.45	0.11	0.12	0.12	0.07	0.11	0.59	0.55	0.60	0.63	0.59
Groundnut +cotton (2:1) 1.22	1.22	1.21	1.20	1.26	1.22	7.41	7.54	7.38	7.44	7.44	0.07	0.18	0.21	0.10	0.14	0.52	0.59	0.59	0.60	0.57
Green gram -sorghum	1.27	1.29	1.23	1.22	1.25	7.43	7.52	7.39	7.56	7.48	0.08	0.15	0.08	0.11	0.11	0.56	0.60	0.58	0.58	0.58
Soybean + pigeon pea (2:1)	1.30	1.26	1.27	1.20	1.26	7.36	7.43	7.48	7.47	7.44	0.11	0.15	0.07	0.12	0.11	0.54	0.51	0.59	0.62	0.57
Mean	1.26	1.26	1.23	1.22		7.44	7.49	7.39	7.48		0.09	0.15	0.12	0.10		0.55	0.56	0.59	0.61	
	S.Em±	0D (P=0.05)				S.Em± (I	00 (P=0.05)				S.Em± (CD (P=0.05)				S.Em± CD (P=0.0	(P=0.05)			
LCRM	0.01	SN				0.06	SN				0.03	NS				0.13	SN			
cs	0.01	NS				0.04	SN				0.02	NS				0.13	SN			
LCRM×CS	0.10	NS				0.19	SN				0.63	SN				0.46	SN			

Cropping systems Broad	Avail	Available N (kg/ha)	ha)			Available P (kg/ha)	P (kg/ha)	_			Availab	Available K (kg/ha)	ha)	
ped and furrow with crop residues	Broad Flat bed bed with and bed furrow crop with residues crop	l Broad and bed furrow s	Flat bed	Mean	Broad bed and furrow with crop crop	Flat bed with a bed crop residues	Broad and bed furrow	Flat bed	Mean	Broad bed and furrow with r crop	Flat bed with bed crop esidues	Broad and bed furrow	Flat bed	Mean
Soybean-wheat 260.0	0 256.7	273.3	261.3	262.8	26.1	26.8	27.0	29.3	27.3	315.7	314.0	350.7	343.3 330.9	30.9
Groundnut +cotton (2:1) 238.0	0 269.0	273.7	271.3	263.0	25.1	28.2	28.3	30.8	28.1	312.7	314.7	370.0	351.3 337.2	37.2
Green gram -sorghum 256.7	7 250.3	252.7	275.7	258.9	25.6	25.5	28.1	31.9	27.8	318.0	328.0	336.7	354.0 334.2	34.2
Soybean + pigeon pea (2:1) 237.3	3 256.7	255.3	275.7	256.3	25.0	25.3	32.1	30.2	28.1	313.3	333.7	324.0	360.0 332.8	32.8
Mean 248.0	0 258.2	263.8	271.0		25.4	26.5	28.9	30.6		314.9	322.6	345.4	352.2	
S.Em≟	I± CD (P=0.05)				S.Em±	CD (P=0.05)				S.Em±	CD (P=0.05)			
LCRM 9.09	SN				1.06	NS				9.96	NS			
CS 4.79	SN				0.85	NS				8.14	SN			
LCRM × CS 4.48	SN S				1.66	NS				4.49	NS			

Table 7.3.4. Available N, P and K at the end of cropping cycle as influenced by land configuration and crop residue management (Dharwad)

	(2	,		•			•					•						
Cropping systems	Bacte	rial popu.	Bacterial population (CFU x 10 [®])	U x 10°)		Ē	ungal po	Fungal population (CFU x 10 ⁴)	(CFU x	(104)	Act	Actinomycetes (CFU × 10³)	etes (CF	U x 10³)		Phosphate Solubilizing Microorganisms (CFU x 10 ⁵)	phate s ganism	Phosphate Solubilizing croorganisms (CFU x 10	zing x 10 ⁵	(
. 2	Broad bed and furrow with re crop	Flat bed with crop residues	Broad bed and furrow	Flat bed	Mean	Broad bed and furrow with re crop residues	Flat bed with crop ssidue	Broad bed and furrow s	Flat bed	Mean	Broad Flat bed bed and with furrow crop f with residues crop	Flat Broad bed bed with and crop furrow sidues	Broad bed and urrow	Flat bed	Mean f	Broad Flat Broad bed bed bed and with and furrowcropfurrow with resi- crop dues residues	Flat E bed with crop fu resi- dues s		Flat Mean bed	Aean
Soybean-wheat	8.02	7.92	7.48	7.08	7.63	5.03	4.98	4.97	4.95	4.98	4.74	4.68	4.42	3.92	4.44	6.46	6.23	6.29	5.92	6.23
Groundnut +cotton (2:1) 8.15	8.15	7.70	7.41	7.02	7.57	5.10	4.95	4.87	4.82	4.94	4.78	4.57	4.37	3.97	4.42	6.51	6.34	6.14	6.00	6.25
Green gram -sorghum	8.29	7.98	7.57	7.12	7.74	5.16	4.89	4.69	5.18	4.98	4.83	4.68	4.52	4.08	4.53	6.58	6.25	6.32	6.03	6.30
Soybean + pigeon pea (2:1)	8.24	7.81	7.27	7.22	7.64	5.01	5.06	4.46	5.01	4.89	4.88	4.62	4.29	4.13	4.48	6.61	6.43	6.16	6.16	6.34
Mean	8.18	7.85	7.43	7.11		5.08	4.97	4.75	4.99		4.81	4.64	4.40	4.03		6.54	6.31	6.23	6.03	
	S.Em±	0D (P=0.05)				S.Em±	CD (P=0.05)				S.Em±	CD (P=0.05)				S.Em± CD (P=0.0	: CD (P=0.05)			
LCRM	0.02	0.06				0.03	0.11				0.02	0.06				0.03 0.11	0.11			
cs	0.02	0.03				0.05	0.09				0.02	0.05				0.02	0.05			
LCRM×CS	0.05	0.15				0.12	0.34				0.07	0.20				0.10	0.31			

Table 7.3.5. Microbial activity in soil at grand growth periods of crops influenced by land configuration and residue management (Dharwad)

and residues management (Dharwad)	harwad)		_		- -)	•	x)
		Pigeonpea					Soybean		
Land configuration and residues management (LCRM)	Gall weevil Pod borer (%) (%)	Pod borer (%)	No. of spider	Defoliators/m 1 row length	Number of Cadavers/ m row length	Number of thrips/leaf	Pod borer (%)	Number of Coccinellids/ plant	Number of spiders/ plant
Broad bed and furrow (BBF) method of planting with crop residues	20.23 (25.70)	19.32 (25.62)	2.61 (1.81)	7.64 (2.86)	3.41 (1.95)	1.18 (1.29)	21.16 (27.29)	3.94 (2.11)	2.72 (1.80)
Conventional flat bed (FB) method of planting with crop residues	27.38 (31.06)	23.51 (29.03)	2.16 (1.65)	7.91 (2.90)	2.20 (1.67)	1.35 (1.38)	23.87 (29.15)	2.01 (1.64)	2.45 (1.75)
Broad bed and furrow (BBF) method of planting without crop residues	19.81 (25.73)	22.02 (28.28)	2.33 (1.67)	7.88 (2.88)	2.21 (1.66)	1.23 (1.35)	24.46 (29.54)	2.45 (1.67)	2.38 (1.66)
Conventional flat bed method (FB) of planting without crop residues	22.73 (28.03)	28.66 (32.09)	1.69 (1.44)	7.22 (2.80)	1.83 (1.55)	1.43 (1.47)	28.67 (32.28)	1.31 (1.41)	1.41 (1.46)
Mean	22.54 (27.63)	23.38 (28.76)	2.20 (1.64)	7.66 (2.86)	2.41 (1.71)	1.30 (1.37)	24.54 (29.57)	2.43 (1.71)	2.24 (1.67)
S.Em±	1.16	084	0.05	0.03	0.06	0.06	0.50	0.11	0.08
LSD (p=0.05)	NS	2.60	0.15	NS	0.18	NS	1.56	0.33	0.25

Table 7.3.6. Number of insect pests population in pigeonpea and soybean under soybean + pigeonpea (2:1) intercropping system influenced by land configuration

ē
ystems
S
ropping
0
crops in different
Ľ.
crops in e
ame (
flegu
it of
weigh
nd dry w
s and dry we
lules
noc
er of
umbe
ž
.3.7
Table 7.3.7
F

Cropping systems		Number of no	odules/plant			Dry	Dry weight of nodules (g/plant)	ules (g/plant)		
	Broad bed and furrow with crop residues	Flat bed with crop residues	Broad bed and furrow	Flat bed	Mean	Broad bed and furrow with crop residues	Flat bed with crop residues	Broad bed and furrow	Flat bed	Mean
Soybean-wheat	43.33	35.53	25.67	23.33	31.97	0.57	0.53	0.32	0.33	0.44
Groundnut +cotton (2:1)	42.00	39.00	28.00	21.67	32.67	0.53	0.27	0.32	0.25	0.34
Green gram -sorghum	55.33	36.00	31.00	22.33	36.17	0.36	0.23	0.15	0.13	0.22
Soybean + pigeon pea (2:1)	58.00	40.00	34.67	25.33	39.50	0.38	0.36	0.25	0.16	0.29
Mean	49.67	37.63	29.84	23.17		0.46	0.35	0.26	0.22	
	S.Em±	CD (P=0.05)				S.Em±	CD (P=0.05)			
LCRM	1.87	6.46				0.02	0.07			
cs	0.68	1.99				0.02	0.05			
LCRM × CS	2.48	7.23				0.29	0.84			

Cropping systems	Rust of soybean	(cv. JS 9305) per	cent disease inde	x	
	Broad bed and furrow with crop residues	Flat bed with crop residues	Broad bed and furrow	Flat bed	Mean
Soybean-wheat	80.3	81.6	77.6	82.5	80.5
Soybean + pigeon pea (2:1)	78.0	80.7	87.2	85.4	82.8
	Cercospora leaf spot of	green gram(cv. D)GGV 2) (% diseas	e index)	
Green gram -sorghum	81.1	86.5	92.2	96.1	89.0
	Powe	dery mildew of g	reen gram		
Green gram -sorghum	80.5	70.9	56.9	43.5	62.9

 Table 7.3.8 Severity of rust in soybean under soybean-wheat system and of Cercospora leaf spot in greengram under greengram-sorghum system influenced by land configuration and crop residues (Dharwad)

Pantnagar (Table 7.3.9 to 7.3.13)

Yield attributes, yield and harvest index of rice (Table 7.3.9)

Significantly higher plant height (110cm), effective tillers/m² (318), panicle weight (1.85 g) and 1000 grain weight (28.7g) was recorded in SRI of rice-wheat-*sesbania*.Panicle weight in SRI rice-wheat-*sesbania* was found *at par* with basmati rice-wheat-*sesbania* and direct seeded rice-chickpea–moong system.

There was significant influence of resource conservation practiceson grain yield, straw yield and harvest index of basmati rice. SRI method of rice-wheat-*sesbania* system reported significantly higher grain (3336kg/ha) and straw yield (7740 kg/ha), though, grain yield under SRI-wheat-*sesbania* system was *at par with* basmati rice-wheat-*sesbania* and DSR+ soybean -vegetable pea+ mustard. Significantly higher harvest index (0.41) was obtained with rice +pigeon pea-cowpea +okra in furrow in raised bed system, though it

Treatments I	Plant height (cm)	Effective tillers/m ²	Wt. of grain/ panicle (g)	1000-grain wt. (g)	Grain yield (kg/ha)	Straw yield (kg/ha)	Harvest Index
(Basmati rice-wheat-sesbania	108	310	1.77	27.7	2978	7174	29.5
SRI-wheat- sesbania	110	318	1.85	28.7	3336	7740	30.7
DSR-wheat (zero tillage) – sesbania	104	264	1.35	25.9	2714	5419	33.4
DSR-wheat-moong on BBF system	107	288	1.46	27.2	2821	5985	32.1
DSR-vegetable pea -cowpea on BBF system	104	273	1.42	25.9	2750	6636	29.5
DSR-chickpea–moong on BBF system	107	291	1.66	27.4	2833	6136	32.2
FIRB:DSR+soyabean -vegetab pea+mustard	le 101	241	1.28	25.6	3004	5249	37.0
FIRB:rice +pigeon pea-cowpea +okra	a 94	217	1.26	24.8	2428	3577	40.6
SE _m ±	2.9	14.4	0.11	0.74	126	660	2.8
CD(p=0.05)	8.7	43.6	0.32	2.24	381	2000	8.6

Table 7.3.9 Yield attributes, yield and harvest Index of rice as influenced by resource conservation method under	
organic management (Pantnagar)	

was found *at par* with DSR-wheat (zero tillage) –*sesbania*,DSR-wheat-moong on broad bed and furrow system, DSR-chickpea–moong on broad bed and furrow system and DSR+soyabean -vegetable pea + mustardin furrow in raised bed system .

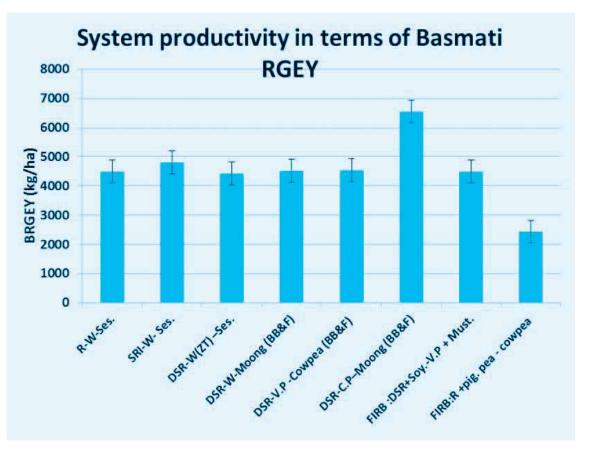
Total Nutrient uptake in rice (Table 7.3.10 to 7.3.11)

Nutrient uptake (N, K& S) except P were significantly influenced by different resource conservation practices. Significantly higher nitrogen (155.7 kg/ha), potassium uptake (115.0 kg/ha) and maximum phosphorus uptake (32.0 kg/ha) by paddy crop was recorded with DSR + soybean -vegetable pea+ mustard in furrow in raised bed system. However, S uptake was significantly higher under SRI-wheat- *sesbania*. Potassium uptake in rice under DSR + soybean -vegetable pea+ mustard in furrow in raised bed system was found *at par* with basmati rice-wheat-*sesbania* system, SRI-wheat-*sesbania* system and DSR-vegetable pea -cowpea on broad bed and furrow system.

Table 7.3.10. Nutrient uptake (kg/ha) by rice influenced by resource conservation methods (Pantnagar)

	-			
Treatments	N uptake (kg/ha)	P uptake (kg/ha)	K uptake (kg/ha)	S uptake (kg/ha)
(Basmati rice-wheat-sesbania)	76.7	27.9	103.8	19.4
(SRI-wheat- sesbania)	91.2	29.3	103.5	28.9
(DSR-wheat(zerotillage) -sesbania)	65.1	27.3	82.8	19.2
(DSR-wheat-moong on BBF system)	71.3	25.1	94.0	23.0
(DSR-vegetable pea -cowpea on BBF system)	83.8	25.7	105.0	23.0
(DSR-chickpea-moong on BBF system)	73.4	26.5	94.9	26.3
(FIRB :DSR+soyabean -vegetable pea+mustard)	155.7	32.0	115.0	17.3
(FIRB:rice +pigeon pea-cowpea +okra)	88.2	19.8	84.7	5.5
SE _m ±	5.2	3.0	6.2	2.2
CD(p=0.05)	15.7	NS	18.9	6.7

Table 7.3.11. Yield of rabi crops influenced by different resource conservation methods (Pantnagar)


Treatments	Plant height (cm)	Spikes/m ² of wheat or Pods/plant of vegetable pea and chickpea	No. of grains/ spike of wheat or seeds/pod of V.P and C.P	1000 grain weight of wheat or 100 seed weight of V.P and C.P
(Basmati rice-wheat-sesbania)	97.2	297	45.2	42.6
(SRI-wheat- sesbania)	100.2	275	47.7	41.9
(DSR-wheat(zerotillage) -sesbania)	98.3	300	45.2	44.3
(DSR-wheat-moong on BBF system)	104.5	305	45.2	42.0
(DSR-vegetable pea -cowpea on BBF system)	75.0	16	6.5	36.2
(DSR-chickpea-moong on BBF system)	69.6	44	2.0	27.4
(FIRB:DSR+soyabean-vegetablepea+mustard)	66.7	13	5.3	33.0
(FIRB:Rice +pigeon pea-cowpea +okra)	-	-	-	-

Yield attributes and yield of *rabi* Crops (Table 7.3.11 to 7.3.12 and figure 7.3.1)

Maximum plant height (104.5 cm) and spikes/m² (305) of wheat was observed in direct seeded ricewheat-moong on broad bed and furrow system followed by DSR-wheat (zero tillage) – *sesbania* resource

Treatments		Yield	d of <i>rabi</i> crop	os(kg/ha)		
	Wheat	Veg. pea	Chickpea	Coriander		l Wheat equivalent yield(kg/ha)
Basmati rice-wheat-sesbania	3061	-	-	-	-	3061
SRI-wheat- sesbania	2985	-	-	-	-	2985
DSR-wheat (zero tillge) -sesbania	3450	-	-	-	-	3450
DSR-wheat-moong on BBF system	2715	-	-	-	385	3458
DSR-vegetable pea -cowpea on BBF system	-	5109	-	267	-	3623
DSR-chickpea-moong on BBF system	-	-	1405	222	-	5876
FIRB :DSR+soyabean -vegetable pea+mustard	-	3343	-	-	636	3010
FIRB:rice +pigeon pea-cowpea +okra	-	-	-	-	-	-
SE _m ±	-	-	-	-	-	303
CD(p=0.05)	-	-	-	-	-	936

Table 7.3.12. Yield (kg/ha) of rabi crops and wheat equivalent yield as influenced by different treatments (Pantnagar)

conservation practice. Plant height and pods/plant of chickpea under DSR-chickpea-moong on broad bed and furrow system was 69.6 cm and 44 cm, respectively. In case of vegetable pea, highest plant height (75cm) and pods/plant (16) were observed in DSR-vegetable pea -cowpea on broad bed and furrow system as compared to DSR+soybean -vegetable pea+mustard on furrow in raised- bed system. Maximum number of grains/spike of wheat (48) was observed in SRI-wheat- *sesbania* whereas, maximum 1000 grain weight (44.3g)of wheat was observed in DSR-wheat (zero tillage) –*sesbania*.

Maximum grain yield of wheat (3450 kg/ha) was observed in DSR-wheat (zero tillage)–*sesbania* followed by in Basmati rice-wheat-*sesbania*(3061 kg/ha) while lowest grain yield (2715 kg/ha) was observed in DSR-wheat-moong on broad-bed and furrow system. Green pod yield of vegetable pea was found highest (5109 kg/ha) in DSR-vegetable pea -cowpea on broad-bed furrow system compared to 3343 kg/ha in DSR+soybean -vegetable pea+mustard on furrow in raised-bed system. Chickpea yield under DSR-chickpea–moong on broad-bed furrow system was 1405kg/ha. Mustard yield was found highest (636 kg/ha) in DSR+soybean -vegetable pea+mustard on furrow in raised-bed system while lowest mustard yield (385 kg/ha) was observed in DSR-wheat-Moong on broad-bed and furrow system. Significantly higher wheat equivalent yield (5876 kg/ha) was observed in DSR-chickpea-moong on broad-bed and furrow system over all other resource conservation practices.

Economics (Table 7.3.13)

Economic analysis of different cropping systems managed through different resource conservation practices revealed that maximum net returns (Rs. 1,79,840 /ha) and B:C ratio (2.72) was recorded in DSR-chickpea–moong on broad bed and furrow system followed by DSR-vegetable pea –cowpea on broad-bed and furrow system. Lowest net returns (Rs. 49,230 /ha) and B: C ratio (1.18) was observed in rice +pigeon pea-cowpea +okra under furrow in raised-bed system. System productivity in terms of basmati ricegrain equivalent yield was significantly influenced by these resource conservation practices. Significantly higher system productivity (6561 kg/ha) was observed in DSR-chickpea–moong on BBF System over all other resource conservation practices.

Soil nutrient status (Table 7.3.14)

Significantly higher organic carbon (1.1 %) in soil was observed in DSR+ soybean -vegetable peamustard under furrow in raised bed system which was at par with DSR-vegetable pea -cowpea on BBF System and DSR-chickpea-moong on BBF system. Significantly higher available N (403 kg/ha) was recorded under DSR-wheat-moong on broad bed and furrow system which was *at par* with all other treatments except basmati rice-wheat-*sesbania* and DSR-chickpea-moong on broad bed and furrow system. Available P ranged from 34.5 to 45.9 kg/ha and significantly higher available P was recorded with DSR-wheat - (zerotillage) –*sesbania* and *at par* with SRI-wheat- *sesbania* and DSR-chickpea-moong on BBF system. Available K in soil ranged from 227 to 247 kg/ha and significantly higher and at par available K was recorded in DSR-wheat-moong on BBF system, DSR+ soyabean -vegetable pea+ mustard under furrow in raised bed system and rice +pigeon pea-cowpea +okra under furrow in raised bed system. Significantly higher available S in soil (42.8 kg/ha) was observed in rice +pigeon pea-cowpea +okra under furrow in raised bed system.

Treatments	System productivity (kg/ha)	Cost of cultivation (Rs./ha)	Net Return (Rs./ha)	B:C Ratio
Basmati Rice-wheat-sesbania	4488	69225	99074	1.43
SRI-wheat- sesbania	4809	72890	107434	1.47
DSR-wheat (zero tillage) -sesbania	4416	61692	103910	1.68
DSR-wheat-moong on BBF system	4527	62520	107259	1.72
DSR-vegetable pea -cowpea on BBF system	4538	61265	108887	1.78
DSR-chickpea-moong on BBF system	6561	66180	179840	2.72
FIRB :DSR+soyabean -vegetable pea+mustard	4489	67285	101053	1.50
FIRB:rice +pigeon pea-cowpea +okra	2428	41820	49230	1.18
SE _m ±	151		-	-
CD(p=0.05)	460		-	-

Table 7.3.14. Nutrient status of soil at the end of crop cycle (Pantnagar)

Treatments	Organic carbon (%)	Available N (kg/ha)	Available P (kg/ha)	Available K (kg/ha)	Available S (kg/ha)
Basmati rice-wheat-sesbania	1.04	343	34.5	227	41.6
SRI-wheat- sesbania	1.06	381	43.7	247	37.4
DSR-wheat (zero tillage) -sesbania	1.02	375	45.9	232	32.6
DSR-wheat-moong on BBF system	1.07	403	36.3	246	38.7
DSR-vegetable pea -cowpea on BBF system	1.09	390	40.5	232	30.3
DSR-chickpea-moong on BBF system	1.10	343	41.0	227	34.9
FIRB:DSR+soyabean-vegetablepea+mustard	1.15	396	35.4	240	42.2
FIRB:rice +pigeon pea-cowpea +okra)	1.06	381	37.1	236	42.8
SE _m ±	0.02	10.1	1.7	4.9	1.7
CD(p=0.05)	0.07	30.6	5.1	14.9	5.2

Performance of direct seeded rice + soybean under organic management at Pantnagar

Performance of rice + pigeon pea intercropping under organic management at Pantnagar

Umiam (Table 7.3.15 to 7.3.19)

Raised and sunken bed (RSB) is a technology for effective land and water management in case of low land and inter-plot water harvesting in upland to increase cropping intensity. The RSB were made in sequence for efficient drainage and inter-plot water harvesting with a fixed width of 1 m for raised and 1.25 m for sunken bed. The lengths of all the plots were same (8 m). The surface soil layer of each sunken bed was removed and deposited on the adjacent raised beds making about 30 cm bed height. All the crop

Cropping sequence	Plant height(cm)	Tiller/m²no's.	Panicle/m²no's.
Rice (IR-64) - Ientil	71.1	212.6	205.9
Rice(VD-82) -lentil	71.0	200.2	173.4
Rice(Shahsarang-1) -lentil	69.0	260.0	234.4
Rice(Lampnah) -lentil	61.1	251.0	221.7

Table 7.3.16. Yield of vegetables under raised bed of variouscropping sequences (Umiam)

Cropping sequences	Yield of raised bed crops (t/ha)		
	Pre-kharif Kharif		
Potato-Okra	16.82	8.53	
Frenchbean- Okra	10.06	9.06	
Carrot- Okra	14.24	8.30	
Mean	13.71	8.63	

Table 7.3.17. Yield of rice on sunken bed of various cropping sequences (Umiam)

Cropping sequences	Grain yield on sunken bed crops (t/ha)	
	Kharif	
	Rice	Lentil
Rice (IR-64) - Lentil	3.52	1.22
Rice(VD-82) -Lentil	3.21	1.34
Rice(Shahsarang-1) -Lentil	4.29	1.16
Rice(Lampnah) -Lentil	4.06	1.24
Mean	3.77	1.24

 Table 7.3.18. Physico-chemical properties of soil under raised beds (Umiam)

Cropping sequences	рН	Organic carbon (%)	Available N (kg/ha)	Available P (kg/ha)	Available K (kg/ha)
Potato-Okra	5.13	2.18	250.52	21.30	260.58
Frenchbean- Okra	5.15	2.31	265.82	23.78	261.50
Carrot- Okra	5.07	2.21	264.03	20.87	259.71
Mean	5.12	2.23	260.12	21.98	260.60

Table 7.3.19. Physico-chemical properties of soil under sunken bed (Umiam)

Cropping sequences	рН	Organic carbon (%)	Available N (kg/ha)	Available P (kg/ha)	Available K (kg/ha)
Rice (IR-64) - Lentil	5.08	2.41	263.92	22.50	264.50
Rice(VD-82) -Lentil	5.08	2.28	261.13	21.09	263.57
Rice(Shahsarang-1) -Lentil	5.13	2.61	265.50	23.44	266.98
Rice(Lampnah) -Lentil	5.21	2.63	266.51	24.60	262.40
Mean	5.13	2.48	264.27	22.91	264.36

residues and weed biomass were placed below the raised beds and covered properly with the soil from sunken beds.Farmyard manure (FYM) was used for all the crops to meet crop nutrient requirement on nitrogen (N) equivalent basis. Phosphorus requirement was compensated through rock phosphate. *Kharif* rice was harvested by leaving at least 20 cm standing stubble during last week of November and thereafter in sunken beds lentil (DPL 15) was grown under zero tillage.For growing lentil in sunken beds, the rice fields were drained at physiological maturity.

Evaluation of rice and okra under raised and sunken bed system at Umiam

Growth parameters of ricein sunken bed (Table 7.3.15)

Among the rice varieties, the highest plant height was recorded in IR-64 (71.1cm) which was followed by Vivek-Dhan-82 (71 cm) and Shahsarang-1 (69 cm). Lampnah (61.1.cm) recorded the shortest plants. Tillers per square meter was recorded highest in Shahsarang-1(260.0) followed by Lampnah (251.0) and IR 64 (212.6).

Yield on raised bed (Table 7.3.16)

The highest vegetable yield was harvested in potato (16.82 t/ha) followed by carrot (14.24 t/ha) and french bean (10.06 t/ha) on raised beds. The yield of okra during *kharif* season was found higher with french bean as preceding crop and ranged from 8.30 to 9.06 t/ha under different cropping sequences on raised beds.

Yield on sunken bed (Table 7.3.17)

In rice based cropping systems in sunken beds, the rice productivity in sunken beds ranged from 3.52 to 4.29 t/ha under various sequences with mean productivity of 3.77 t/ha. Among the rice varieties, Shahsarang-1 recorded the highest yield (4.29 t/ha) followed by Lampnah (4.06 t/ha). During *rabi* season, lentil yield ranged from 1.16 to 1.34 t/ha.

Physico-chemical properties of soil (Table 7.3.18 & 7.3.19)

Soil pH, Organic Carbon (OC), available nitrogen, available phosphorus and available potassium were recorded highest under french bean-okra cropping systems recording 5.15, 2.31%, 265.82 kg/ha, 23.78 kg/ha and 261.5 kg/ha respectively under raised beds. In case of sunken beds, rice (Lampnah)-lentil cropping system recorded maximum soil pH (5.21), organic carbon (2.63%), available nitrogen (266.51 kg/ha) and available phosphorus (24.6 kg/ha) whereas, highest available potassium was observed under rice (Shahsarang-1)-lentil (266.98 kg/ha).

7.4 Development of Integrated Organic Farming System Models

Objective

To evaluate the modules of organic production system to develop integrated organic farming system

Farming system modules

Module	Components
Сгор	Identified high value crops of organic farming + required quantity of fodder for livestock
Livestock	Cow/Buffalo/Goat/Poultry depending upon the location and size of the model
Complimentary enterprises	Biogas, Vermicompost unit, Live fencing, seed/planting material production unit

Locations: Calicut, Coimbatore and Umiam

Year of start: 2013-14

Results:

Calicut

Turmeric based integrated organic farming system

Since, it is the first year, maximum efforts were made to establish the model. The plot with spices, fodder and vegetables combination was established at Chelavoor farm. Crop component comprises of turmeric (2000 m²), fruit crop banana (100 m²), pineapple (200 m²), vegetable cow pea (100 m²) and fodder grasses viz., CO3 (500 m²), Hybrid Napier (200 m²), CO4 (500 m²) and Congo signal (200 m²).

The crops, turmeric, ginger, fodder grasses (congo signal grass, CO3, CO4), yams, tapioca, banana and pineapple were planted and established. Harvested fodder grasses (686 kg), Tapioca (80 kg) and vegetable cowpea (8 kg).

Banana in IOFS

Fodder and turmeric in IFS

Coimbatore (Table 7.4.1 to 7.4.7)

Composition of organic farming system (0.40 ha)

Components	Treatments/ Remarks
Crop component	Cropping Systems: 1. Okra + leaf coriander - maize + cowpea (fodder) - (0.12 ha) 2. Green manure - cotton - sorghum (0.12 ha) 3. Fodder grass CO CN (4) and desmanthus (0.10 ha)
Agro forestry	Sesbania grandiflora, Thespesia populnea, Leuceania leucocephala
Dairy	2 cows with calves
Vermicompost	The residue of the crops and manure from the dairy unit are converted into vermicompost and used as enriched manure for crops
Area under supporting activities	Manure pit, threshing floor
Border plants	Desmanthus, Banana, Glyricidia

Performance of okra + leaf coriander - maize + cowpea (fodder) system

In okra plant height of 72.6 cm was recorded at harvest with 1666 kg/ha of dry matter production. Fruit yield of 11287 kg/ha was recorded in okra variety Anarva. Organic okra seeds were produced during the final harvest. In okra net return of Rs. 68,837/ha was recorded in organic farming system.

In okra + leaf coriander cropping system, the grasses were dominating with 198.6 numbers/m⁻² at 20 DAS & 157 numbers/m⁻² at 40 DAS followed by broad leaved weeds (20 DAS - 21.6/m⁻² & 40 DAS - 15/m⁻²) and negligible with sedges. The weed biomass at 20 & 40 DAS revealed that the dry weight of grasses (211 kg/ha at 20 DAS & 14 kg/ha at 40 DAS respectively) were the highest under okra + leaf coriander cropping system. The dry weight of broad leaved weeds (58 kg/ha at 20 DAS & 7 kg/ha at 40 DAS respectively) were also higher when compared to sedges.

 Table 7.4.1. Plant growth, soil fertility and yield parameters

 of okra under organic farming system model

Particulars	Okra (at harvest)
Plant height (cm)	72.6
DMP (kg/ha)	1666
N (kg/ha)	252.0
P (kg/ha)	8.6
K (kg/ha)	473.0
Fruit length (cm)	9.04
Fruit girth (cm)	5.08
No. of fruits/plant	17.4
Fruit weight (g/ fruit)	14.6
Fruit yield (kg/ha)	11287
Cost of cultivation (Rs/ha)	100475
Gross return (Rs/ha)	169312
Net return (Rs/ha)	68837

Table 7.4.2. Weed density (per m²) and weed biomass (kg/ha) at 20 & 40 DAS under organic farming system model (Coimbatore)

Particulars	Weed density/m ²		Weed biom	ass (kg/ha)
	20 DAS	40 DAS	20 DAS	40 DAS
Grasses	198.6	157.0	211	14
Sedges	1.0	2.0	1.5	0.17
Broad leaved weeds	21.6	15.0	58	7.0

Maize: Maize var. COH (M) 6 recorded 4352 kg/ha of grain yield with 5013 kg/ ha of straw yield. Maize recorded the net income of Rs. 27,876/ ha under organic farming system model.

Performance of maize under IOFS

Performance of green manure - cotton – sorghum system

Cotton: The results indicated that the number of grasses, sedges and broad leaved weeds observed

 Table 7.4.3 Plant growth, soil fertility, yield parameters, yield and economics of maize under organic farming system model (Coimbatore)

 Particulars
 Maize (at harvest)

Particulars	Maize (at harvest)
Plant height (cm)	215.9
DMP (kg/ha)	8143
N (kg/ha)	257.00
P (kg/ha)	11.50
K (kg/ha)	458.00
No. of rows/cob	14.2
No. of grains/row	35.2
100 Seed wt. (g)	31.40
Grain yield (kg/ha)	4352.00
Straw yield (kg/ha)	5013.00
Cost of cultivation	26850
Gross return	54725
Net return	27876

were 237.0, 7.0 and 16.0 at 20 DAS & 127.0, 2.0, 11.0 at 20 and 40 DAS respectively. Higher weed biomass was observed in grasses followed by broad leaved weeds at 20 & 40 DAS.

Table 7.4.4. Weed density (per m ²) and weed biomass (kg/ha) at 20 DAS & 40 DAS under organic farming system model	
(Coimbatore)	

Particulars	Weed den	isity/m²	Weed biom	ass (kg/ha)
	20 DAS	40 DAS	20 DAS	40 DAS
Grasses	237.0	127.0	312.0	12.0
Sedges	7.0	2.0	17.0	0.1
Broad leaved weeds	16.0	11.0	55.0	3.7

Cotton recorded 4293 kg/ha of dry matter production was recorded at the stage of harvest. Seed cotton yield of 1122 kg/ha was recorded. In cotton net return of Rs. 15,430/ha was recorded under organic farming system.

Under organic farming system model, sorghum yielded 4251 kg/ha of grain and 6078 kg/ha of straw yield. Post harvest soil nutrient status shows the high amount of available nitrogen, phosphorus and potassium in soil. In organic farming system model, sorghum recorded Rs. 14,702 as net income with Rs. 16,882 as cost of cultivation.

Agroforestry: Trees species like malaivembu (*Melia dubia*), pungam (*Pongamia pinnata*), perumaram (*Ailanthus excelsa*), neem (*Azadirachta indica*), kumil (*Gmelina arborea*) and sithagathi (*Sesbania sesban*) are planted and utilized for fodder, pest control source, soil enrichment and as wood.

Table 7.4.5. Plant growth, yield parameters, yield, soil fertility and economics of cotton under organic farming system model (Coimbatore) Table 7.4.6. Plant growth, yield parameters, yield, soil fertility and economics of sorghum under organic farming system model (Coimbatore)

Particulars	Cotton (at harvest)
Plant height (cm)	108.6
DMP (kg/ha)	4293
N (kg/ha)	251
P (kg/ha)	9.4
K (kg/ha)	477
No of sympodial branches	15.8
No of bolls per plant	21.7
Seed cotton yield (kg/ ha)	1122
Cost of cultivation (Rs/ha)	40670
Gross return (Rs/ha)	56100
Net return (Rs/ha)	15430

Particulars	Sorghum (at harvest)
Plant height (cm)	226.70
DMP (kg/ ha)	5425.00
N (kg /ha)	253.00
P (kg /ha)	12.50
K (kg /ha)	471.00
Grain yield (kg/ha)	4251.00
Straw yield (kg/ha)	6078.00
Cost of cultivation (Rs/ha)	16,882.00
Gross Return (Rs/ha)	31,584.00
Net Return (Rs/ha)	14,702.00

Dairy unit: Two numbers of cross bred Holstein Friesian cows (1 milch animal and 1 heifer) are maintained. Fodder obtained from crop component (fodder sorghum and fodder cowpea) along with Cumbu Napier grass was fed to the animals.

Animal No.	Sex	Age (as on	Year of purchase & price	Intercalving period	Milk quality	
		30.09.2014)		(days)	Fat (%)	SNF (%)
TNAU 0002(COW)	F	3 yrs 10 months and 27 days	06.02.2014 Rs. 5,000/-	359	4.5	9.0
TNAU 0005(Heifer)	F	2 yrs 10 months and 22 days	06.02.2014 Rs. 1,000/-	-	4.3	8.9

Vermicompost: In the existing vermicompost unit two chambers were maintained for composting of cow dung. The crop residues and weed biomass obtained from the crop component were allowed for partial decomposition by adding cow dung and cow urine. The partially decomposed wastes were then shifted to the vermicompost unit and earthworms were released. Required moisture level was maintained by frequent watering and the unit was monitored for the activity of earthworms.

Umiam (Table 7.4.8 to 7.4.9)

The Integrated Organic Farming System Model (IOFS) comprises of different enterprises which includes cereals *viz.* rice and maize, pulses and oilseeds *viz.* soybean, lentil and pea, vegetable crops *viz.* frenchbean, tomato, carrot, okra, brinjal, cabbage, potato, broccoli, cauliflower, chilli, coriander, etc. fodder, fruits *viz.* Assam lemon and papaya, livestock unit(dairy), vermicomposting and fishery unit. A farm pond of 460 square metre area with average depth of 1.5 m was part of the IFS model for life saving irrigation and aquaculture. The value of REY is found to be comparatively higher in case of vegetable crops like cole crops, french bean, tomato and broccoli. The effect (legume) of soybean on other subsequent crops such as tomato and french bean and potato was found to be high. Apart from crop component good dividends from other enterprises like permanent fruit crops and live stock were also derived. In the model one cow along with one calf produced 1458 liters of milk per year with gross return of as Rs.43740.

Orgain chilli harvested form IOFS

General view of IOFS model

 Table 7.4.8. Area, production and economics of the IFS model for organic food production

Components	Gross Area (m²)	Net Area (m²)	Production (t)	Cost of cultivation (Rs)	Gross Income (Rs)	Net Return (Rs)	REY (t/ha)
Cereals							
Rice Maize	1579 485	1579 485	0.71 0.23	4800 1780	7515 2338	2715 558	4.50 4.82
Pulses/Oilseeds							
Soybean Lentil(Utera) Pea	485 225 225	Intercrop with maize Under rice fallow Under rice fallow	0.04 0.03 0.06	318 282 388	480 450 1200	162 168 812	0.99 2.00 5.34
Vegetables							
Frenchbean Tomato Carrot Okra Brinjal Cabbage Potato Broccoli Cauliflower Chilli Coriander	234 403 110 337 282 181 256 118 118 96 32	Rotation with maize and okra Rotation with maize and brinjal Rotation with okra 337 282 181 Rotation with maize and okra 118 118 96 32	0.23 0.44 0.15 0.29 0.23 0.36 0.38 0.18 0.24 0.02 0.02	1043 1882 953 1569 1351 1123 1487 1050 1100 350 321	3506 6646 1500 2861 2300 3616 3837 4500 3600 576 485	2463 4764 547 1292 949 2493 2350 3450 2500 226 164	$\begin{array}{c} 20.00\\ 16.50\\ 14.00\\ 17.00\\ 8.15\\ 20.00\\ 15.00\\ 38.27\\ 30.00\\ 5.94\\ 15.00\\ \end{array}$
Fruits							
Assam Lemon Papaya	80 54	80 54	0.04 0.14	595 687	1600 1400	1005 713	
Livestock							
Dairy (1 cow with 1 calf) Milk Cowdung (adult) Cowdung (calf)	36	36	1458 lit/year 4.5 1.5	36488	43740 4500 1500	13252	
Fishery							
Composite fish culture Vermicompost Fodder	460 72 382	460 72 382	0.24 0.15 4.01	8462.0 400 1826	19200 1200 8026	10738 800 6200	
Total	6249	4311		68255	126576	58321	
Rice Equivalent Yield (t/ha)	12.66						
Cropping Intensity	144.94						
Farmers' Practice (Rice mono cropping)		1.724	8622	17240	8618		

Table 7.4.9. Assumptions on food requirement and other expenditure per day for a four member family (2 adults and 2 children)

Food items	Quantity (g)	Price (Rs.)
Rice	1500	37
Dal	200	16
Oil	100	10
Vegetables	1500	30
Fruits	500	30
Others	-	37
Total		160

In an area of 6249 m² under gross cropping, 9.37 t of FYM (@15t/ha) is required for organic crop production. FYM produced within existing farming system is 6.3 t [6t + 0.3t (FYM equivalent from 0.15 t vermicompost)]. Hence initially, only 3.07 t of FYM is required to be purchased from outside to sustain the model in the first year of establishment. The requirement of FYM would be reduced substantially with the efficient recycling of on farm biomass, pond silt, intercropping with legumes, etc. and the model can be self-sustainable. The net income from 0.43 ha area of IFS model was Rs.58321 or Rs 4860 per month or Rs. 160 per day. The increase in net

income over farmers practice was found to be 5 times. Considering the benefits from the IFS model with a net income of Rs 160 per day, it can sustain a four member family as the model could also meet the requirement of healthy food for the family.

Fish culture in Integrated organic farming system

Chili under Integrated organic farming system

Cabbage production under organic farming system

7.5 Tribal Sub Plan (TSP)

Tribal sub plan activities were undertaken at selected locations in which cluster based demonstrations, trainings, human resources development activities were undertaken.

Locations: Coimbatore, Dharwad, Raipur and Umiam

Year: 2013-14

Coimbatore (Tamil Nadu): Twenty five farmers in Maanaaru village of Karamadai block in Coimbatore district of Tamil Nadu were covered. Training on "Cluster based capacity building cum livelihood generation programme to tribal farmers" was conducted in the Maanaaru village in Tamil Nadu in which 25 tribal families including 6 female benefitted. From the trained group from Tamil Nadu, ManarVanadesa Farmers Group was formed for organic certification and registered at Joint Registrar Office, Coimbatore.

Dharwad (Karanataka): Fifty tribal farmers in 4 villages (Emmatti, Gudihal, Tavargeriand Devikoppa) in KalaghatagiTaluk of Dharwad district in Karnataka were covered. The bench mark study of the farm families and inventorization of farm resources has been done in four villages of Karnataka.

Raipur (Chhattisgarh): Ten tribal farmers in Raipur district of Chattisgarh covered. Five number vermicompost unit and 5 number of azolla production units established. Two trainings (Vermicompost and azolla production) were also organized.

Umiam

Cluster based demonstration of organic farming package in tribal clusters was undertaken for organic food production through integrated farming system using cluster approach. Mynsain village in Meghalaya adapted for disseminating organic production technology developed under NPOF in participatory mode. The village was having 120 households with area of around 60 ha. As per the interaction with the farmers and elder persons of the village, it is learnt that the village is totally organic as no inorganic input is applied. The sensitization meeting with the villagers including village head (Headman), member of the SHGs, Department of agriculture (Gram Sabath) was organized on 13th May 2013, subsequently a group of farmers visited NPOF experiment at Umiam to get first hand exposure to various technologies to be demonstrated under the programme. The improved seeds like maize, groundnut, frenchbean and some vegetables seeds were distributed to the farmers. The formal Memorandum of Understanding (MOU) between institute and the village was made. The participatory rural appraisal (PRA) and farmers training were conducted to initiate the programme.

Food-Feed Crop Production: Farmers was encouraged to grow crops such as sweet potato, maize, cucumber etc. as food for consumption purpose and as feed for livestock.

Livestock: As pig farming is mostly followed by the farmers, improved piggery were promoted. Some farmers practiced dairying. The cowdungwas used for vermicomposting, FYM preparation etc. for crop production and organic milk was sold at comparatively higher price.

Green leaf manuring trees: Leguminous multipurpose trees such as *Acacia auriculiformis* (Japenese Acacia), *Erythrina indica*, *Samanea saman* (Acacia), *Delonix regia* (Gulmohar), *Pongamia glabra* (Pogamia)

and Azadirachta indica (Neem) was grown in wasteland, degraded community lands for green leaf manuring..

Participatory Rural Appraisal: Participatory Rural Appraisal (PRA) on "Organic food production through integrated farming system- cluster approach" was conducted on the 27th-28th August,2013 to analyze the socio economic conditions and problems related to agriculture being faced by the villagers. The programme was actively participated by the villagers where information was collected through direct interaction among the group members and the villagers.

Interaction with the villagers

Villagers Participating in PRA

Geographical Coordinates of village was latitude 25°44'339", longitude 092°00'937" and altitude 884 m. Agriculture and Landless labourers constituted (85%) while remaining was in service, private shops etc.

Crop husbandry

Crops in Pre kharif	: Groundnut, cucurbits (bottle gourd, bitter gourd etc.), lettuce, french bean.
Crops in kharif	: Rice, cowpea, tomato.
Crops in <i>rabi</i>	: Toria, potato, cabbage, cauliflower, radish, carrot
Other major crop	: Maize
Other Fruit Trees	: Guava, carambola, pumelo,
Vegetables	: Cucurbits, tomato, cabbage & cauliflower, cowpea, radish, carrot, leafy vegetables (lettuce), potato.
Spices	: Ginger and turmeric

Animal husbandry

Animals	Population in entire village	Econom	ic yield
		Milk (litre/day)	Uses
Cattle	Indigenous (Desi) (29 no.'s)	2.5-4	Milk
	Cross-bred (1 no.'s)	8-10	Milk
Goat	Bengal goat (2 no.'s)	-	Meat
Poultry	Desi (226 no.'s)	-	Meat and egg
Pig	Local (42 no.'s)	-	Meat

Information on ecological aspects: Natural vegetation found are Bamboo, Pine trees, Sal, Amla. Major weeds observed are Parthenium, *Melilotus, Cyperus rotundus, Euphorbia hirta, Cyperus iria, Echinocloa colonum, Echinocloa cruss galli, Eupatorium odoratum, Lantana, Chenopodium, Martelia. Ageratum conezoic, Biden pilosa.*

Major findings from the PRA: The villagers were actively engaged in agriculture for their livelihood and most of the farmers in this village were small and marginal. Besides organic farming, *Jhum* Cultivation was also prevalent in the village and mostly followed mono-cropping system. Cultivated low yielding local varieties and thus very low farm income. Lack of irrigation facilities, even for drinking is a major problem during dry season where the villagers have to walk long distances (up to 0.5 km) in order to get drinking water. Almost each and every household are rearing pigs which is the most common livestock, but the productivity is very low due to local breed. Only few households have dairy and poultry.Rice is the most common cereal followed by maize. No improved farm mechanization, manual spading is followed for land preparation. Free grazing during winter season limits the scope for double cropping.Overall, lack of awareness about improved agricultural practices was found to be major issue affecting productivity. From the survey it was also found that village is nearest to Bhoirymbong (5 km) where farmers frequently visit for purchasing and selling of goods. There is only one primary school and one Anganwadi centre. For higher education the students goes to Shillong. For health care the villagers have to go to the nearby villages' viz. Bhoirymbong (5 km) and Pynthor village (2 km) from Mynsain village. Before the initiation of the programme the villagers are not aware about ICAR and extension machineries.

Social: From the finding it was found that the villager's settlement was closed from each other and majority of them is Christian. The village has a Dorbarshnong (Village Panchayat) headed by the headman of the village, the people meet each other in church, community hall and tea shop. Any problem which arises within the village was solved by the Dorbarshnong.

Agro-Ecology: Rice in low land and maize in upland are the most common cereals. Ginger, turmeric and french bean are also grown and mono-cropping pattern was being adopted. Different type of trees available in hills and fodder grass (paragrass). Cyperus are commonly present in lowland.

Particulars	Articles
Transport facilities	Shared Taxi
Common facility	Tap water, Football Ground.
Communication facilities	Mobile, Television, DTH services,
Educational facilities	Lower Primary school
Health and welfare societies information	Aganwadi centre, Self help group, ASHA.
Agriculture implements	Power tiller, Knapsack sprayer, Spade,
Animals use for agriculture	Hired Bull for Ploughing and levelling of paddy field
Advisory facilities information	ICAR, SIRD.
Animal Reproduction	Naturally

Village resources

Mobility: The most frequently visited places by the villagers are Bhoirymbongand Umroi. They visit these places for marketing of agricultural produce, education, medical facilities, bank, and veterinary hospital,

purchase of agricultural inputs, entertainment, household purpose and purchase and repair of agricultural machineries. There is no government as well as private bus service for the villagers. So they commute mainly by local cab or taxi and sometimes on foot to nearby places.

SI. No.	Place	Distance	Mode	Frequency	Purpose
1	Bhoirymbon	g 5 (km)	Local cab (Car, Van)	Very frequently	Marketing, Education, Medical, Bank, Agril. Inputs, Entertainment, household purpose
2	Umroi	10 (km)	Sumo, Auto, Car, Van and Bus	Sometimes	Bank, Marketing, Veterinary hospital.
3	Pynthor	2 (km)	Local cab (Car, Van), Walking	Frequently	Education, Medical (Sub center)
4	Shillong	30 (km)	Bus, Sumo, Car, Van	Sometimes	Court, Hospital, Marketing

Table 7.5.1. Places frequently visited by villagers and mode of transport

Table 7.5.2. Daily activity profile of village male and fe	male
--	------

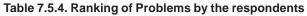

Time	Male	Female
6:00am	Wake Up	Wake Up
7.00 am	Breakfast	Cooking & household works
8.00 am		
9.00 am	Farm Work	Cooking, preparation/collection of fuel wood
10.00 am		
11.00 am		
11.30 am		
12.30 pm		
1.30 pm	Lunch,	Lunch,
3.00- 5.00 pm	Farm Work	
5.30 pm	Marketing,	
6.30 pm	Visit to town, gossiping	Cooking & household works
7.30 pm	Dinner/watching TV	Dinner/watching TV
9.00 pm		
10.30 pm	Sleep	Sleep

Table 7.5.3. The various technologies adopted/Non adopted/ partially /discontinued in Mynsain village

SI.No	Crops	Technology	Status	Reasons
	Technology table	e for crops		
1 2 3 4 5 6 7	Paddy Ginger Turmeric Maize Mustard Chilli Potato	- - - -	Not-adopted Not-adopted Not-adopted Non-adopted Not -adopted Not-adopted Not-adopted	Lack of accessibility and information's Lack of accessibility and information's Traditional way of growing crops Lack of opportunity Lack of knowledge and processing and marketing unit Not yet experience Lack of opportunity
	Technology table	e for agricultural		
1 2 3 4 5 6	Jhum improvement Line Sowing Recommended so Fodder cultivation Zero tillage SRI cultivation	spacing	Bench terrace Not adopted Not adopted Not adopted Not introduced Not introduced	Reduced runoff and less soil degradation Do not know about the benefit by planting in line Lack of knowledge Lack of knowledge and planting skills Lack of awareness Lack of awareness

SI.No	Crops Technology	Status	Reasons
7	Improved varieties	Adopted	For better yield and disease free plants
	Technologies for farm implen	nents	
1	Country plough	Not adopted	Unavailability of bullock within the village
2	Tractor	Not adopted	Lack of finance
3	Paddy and wheat thrasher	Adopted	High grain separating efficiency , less time consuming and less labour intensive
4	Knapsack sprayer	Adopted	High efficiency in spraying , low cost, easily manageable
	Technologies for animal hust	bandry	
1	Cross breed	Partially adopted	High yield, Improvement of progeny
2	Indigenous Cow (Desi)	Continued	Less feed requirement, high fat content, less disease prone, local demand for its milk
3	Exotic breed	Not adopted	Less preference of meat to consumers
4	Artificial insemination	Partially adopted	
5	Pisciculture	Adopted at very limited scale	Water holding capacity of the soil is low resulting in drying of ponds

Problem identification: Health problem in pig and poultry and soft rot of ginger were identified as major problem in the locality. Lists of problems obtained from the villagers were put in a table and the villagers were asked to rank those problems in the scale of 1-10, 1 being the most important problem. The details are presented in table 7.5.4.

Problems	Rank by the respondents										
	1	2	3	4	5	6	7	8	9	10	Total
Disease attack in pig and poultry	Ι	N	I	I	Ι	I	IV	Ι	Ш	Ш	18
Shortage of HYV seeds	Х	III	VIII	П	IV	Ш	VII	V	VII	VI	54
Pest and Disease attack in crops and vegetables	XI	V	XI	V	XII	XI	III	Х	XI	K	88
Soft rot in Ginger	III	Ш	XII	IV	VIII	N	I	Ш	III	VIII	48
Lack of improved technology (Power tiller, Tractor etc)	VII	Х	XIII	VIII	XIII	V	VIII	VI	VI	III	79
Marketing of agricultural inputs	XII	XIII	VII	IX	IX	M	IX	XI	XII	N	92
Expensive cost of feed and fodder	N	VII	K	XI	V	VII	V	VII	IX	V	69
Less yield in rice	XIII	I	П	III	XI	XII	Х	XIII	XIII	XIII	91
Viral disease in chilli	V	VIII	Ш	XIII	Х	VIII	XII	IV	N	Х	77
Lack of water storage facilities	VIII	XII	M	XII	Ш	IX	XI	XII	Х	XII	94
Damage in citrus fruit by insects	M	X	V	VII	XII	XIII	XIII	IX	VIII	XI	89
Over grazing in Rabi season	K	K	IV	N	VI	Х	VI	VIII	V	Ι	64
Lack of financial support	K	VI	Х	Х	Ш	Ш	Ш	Ш	T	VII	53

Development of pond: One new pond was constructed in farmer's land of Mynsain village. The pond was constructed for multiple uses, such as, pisciculture and for rearing of animals, for irrigation purposes during lean period and for cultivation of

crops. Liming (2 t/ha) and application of FYM (10 t/ha) was performed after digging new pond for developing soil fertility. Apart from the new pond, three existing ponds were also renovated in farmer's field for multiple uses. The construction and renovation of these ponds were actively participated by the farmer's themselves which inturn added some amount of employment to the villagers. Names of farmers, village and geographical coordinates of the demonstration sites are given below.

Name of beneficiary	Area of pond (m ²)	Latitude (N)	Longitude (E)	Elevation above sea level(m)
Mrs. Pretowon Rynghang	300	25°44'340''	092º01'082''	863m
Mr. Rongdondor Rympei	240	25°44'150''	092º00'920''	876m
Mr. Lambor Rympei	360	25°44'613''	092º01'214''	856m
Mr. Presion Mawlong	400	25°44'742''	092º01'157''	862m

Jalkund: A small rain water harvesting structure called *Jalkunds* suitable for hilltops was introduced in Mynsain village. The dimension was 5m x 4m x 1.5m which can store about 30,000 liters water were constructed in farmer's fields. *Jalkund* were constructed at higher elevations, so as water flowing down the slopes is collected in a *Jalkund* that will roughly store an adequate amount of water for the farmers' to utilize for irrigation. Construction of *Jalkund* was done as per method given below:-

Excavation of the *Jalkund* on selected site was done before onset of monsoon. The bed and sides of the *Jalkund* were leveled by removing rocks, stones or other projections, which otherwise might damage the lining material. The inner walls including bottom of the *Jalkund* were properly smoothened by plastering

Sequential stages of preparation of Jalkund

with mixture of clay and muddy soil. After clay plastering, about 3-5 cm thick cushioning was done with locally and easily available (long tall grasses) on the walls and bottom to avoid any kind of damage to the lining material from any sharp or conical gravel. It is followed by laying down of 250 GSM silpaulin sheets. The sheet was laid down in the *Jalkund* in such a way that it touches the bottom and walls loosely and uniformly and stretched out to a width of about 50 cm all around the length and width of the *Jalkund*. About 30 x 30 cm trench was dug all around the *Jalkund* and 25 cm outer edge of the sheet was buried in the soil so that the sheet is tightly bound from all around.

Farmers in mynsain village are using stored water for growing vegetables such as frenchbean, cabbage, brocolli, tomato, lettuce, cucurbits and for rearing of animals such as pig and poultry. Using stored water economically in various farm activities is the most acceptable and profitable one particularly to those in hilltop where drought is the major problem. Therefore, the stored water helps the farmers of this village to raised crops for the whole year. The names of farmers, village and their geographical location of the demonstration are given below.

Name of beneficiary	Latitude (N)	Longitude (E)	Elevation above mean sea level (m)	Crops grown/livestock reared using harvested water
Mrs Pynsan Rynghang	25°44'704'	092º01'276''	872m	broccoli, cabbage, lettuce, french bean
Mrs Skola Kurbah	25°44'542''	092º01'236''	859m	broccoli, cabbage, lettuce, french bean)
Mrs Ladei Nongsiej	25°44'573''	092º01'318''	861m	broccoli, cabbage, lettuce, french bean
Mr Ambor Makhroh	25º44'313''	092º00'056''	875m	broccoli, cabbage, lettuce, french bean and for rearing of pigs
Mr Synsharsuk Rynghang	25°44'539''	092º01'447''	866m	french bean and vermicomposting unit
Mrs Guardian Shadap	25°44'301''	092º00'847''	884m	french bean
Mrs Hynniew Rynghang	25°44'602''	092º01'261''	874m	lettuce, french bean and for piggery and dairy.
Mrs Trias Makhroh	25º44'222''	092º00'835''	882m	broccoli, cabbage, lettuce, french bean and for rearing of pigs and poultry.
Mr Aphilous Makhroh	25º44'317''	092º00'068''	869m	broccoli, cabbage, lettuce, french bean and for rearing of pigs.
Mrs Entinora Rynghang	25º44'557''	092º01'296''	860m	brocolli,cabbage,lettuce,french bean for rearing pig and dairy.
Mr Pynskhem Kharsohnoh	25°44'522''	092º01'072''	868m	chilli, french bean.
Mr Phang Rympei	25º44'623''	092º01'287''	876m	broccoli, cabbage, lettuce, french bean and for rearing of pigs.
Mr Rongdondor Lapang	25º44'313''	092º00'037''	874m	tomato, broccoli, cabbage, lettuce, french bean.
Mrs Shandriana Rympei	25°44'745''	092º01'338''	876m	broccoli, cabbage, french bean and for rearing of poultry.
Mr Bolbahadur Sarki	25º44'571''	092º00'872''	882m	french bean and for rearing cows.
Mrs Blianda Lapang	25º44'493''	092º01'057''	874m	french bean.

Table 7.5.6. List of beneficiary for Jalkund and their geographical locations

Network Project on Organic Farming

Vermicomposting unit: A community vermicomposting unit (6m x 8m x2.6m) consisting of eight composting tanks (2m x 1.5m x 0.75m) was constructed in Mynsain village with an objective to recycle on-farm biomass to increase the fertility of the soil. Vermicomposting unit was constructed with rectangular bricks columns. Cement tanks which were filled with. The biomasses collected from farmer's field by the community and produced vermicompost for the village.

Community vermicompost tank

Bench terracing

Terracing: Bench terraces were developed in different farmer's field to bring additional area under cultivation. Bench terraces are usually found on medium to steep slope, they consist of beds which are more or less level and risers (walls or bunds). It is easy to grow crops on the beds because it is fairly level. To be effective, bench terraces must be well maintained. The risers planted with grass, and repair them if necessary. Use of conservation agriculture on the beds to conserve the soil, encourage water to sink in, and maintain soil fertility. The newly prepared terraces were applied with lime (2 t/ha), FYM (15 t/ha) and other biomass to develop soil

fertility. The vegetables like groundnut, rice bean, green gram, soybean etc are planned to cultivate in first year to develop soil fertility. Five bench terraces were constructed in different farmer's field. The details are given below.

Name of beneficiary	Area (m ²)	Latitude (N)	Longitude (E)	Elevation above sea level (m)
Mrs. Guardian Shadap	2700	25°44'305''	092º00'836''	884m
Mrs. Tiewlang Lapang	1332.93	25°44'313''	092º00'036''	874m
Mr. Ambor Makhroh	1800	25°44'301''	092º00'048''	873m
Mrs. Dapbiang Makhroh	1856.28	25°44'377''	092º01'053''	874m
Mrs. Shandriana Rympei	2386.23	25°44'736''	092º00'335''	872m
Mr. Synsharsuk Rynghang	2703	25°44'537''	092º01'419''	861m

Raised and Sunken beds: Raised and Sunken beds were developed after rice harvest in lowland for cultivation of vegetables. The dimension of the raised bed were 0.75-1m breadth, 10m length, 0.3-0.5m height and the drainage channel (sunken bed) varies from 0.2-0.5m respectively. A total of 10509 m² (about 1 ha) area has been brought under vegetable cultivation in lowland through raised and sunken beds land configuration. Vegetables such as tomato (var. Avinash, Rocky), french bean (var. Naga local), potato (var. Kufrimegha), Carrot (var. New Kuroda), lettuce were grown by the farmers on raised beds.

Name of beneficiary	Area (m²)	Latitude (N)	Longitude(E)	Elevation above sea level(m)
Mr. Aphilous Makhroh	1031.2	25°44'116''	092º00'869''	864m
Mr. Ambor Makhroh	1209.3	25°44'253''	092º00'010''	857m
Mrs. Hostina Makhroh	220.70	25°44'218''	092º00'903''	858m
Mrs. Dapbiang Makhroh	1466	25°44'402''	092º01'016''	870m
Mrs. Hunlang Makhroh	582.30	25°44'212''	092º00'882''	860m
Mr. Debinus Nongsiej	1466	25°44'614''	092º01'100''	840m
Mr. Rongdondor Makhroh	621.28	25°44'083''	092°00'942''	873m
Mr. Shaibor Makhroh	1085.88	25°44'090''	092º00'879''	866m
Mr. Bankhrawbok Rynghang	469.82	25°44'590''	092º01'092''	844m
Mrs. Rina Lapang	1520.40	25°44'151''	092°00'900''	862m
Mrs. Paleiti Makhroh	836.14	25°44'094''	092°00'916''	869m
Total	Area = 10509.0	2m²		

Table 7.5.8. Location of demonstration sites and beneficiary details

Raised and sunken bed developed by farmers in Mynsain Village

Fruit trees plantation: Two hundred numbers of Guava seedlings were planted in farmers field (LadeishaNongsiej) in the month of July covering an area of about 1500 m² ($25^{0}44'623''N$ latitude, $092^{0}01'374''E$ longitude and 853m altitude). Pits of 1 x 1x 1 m were dugged at 5m x 5mapart and were incorporated with upper 30 cm soil along with 3 to 5 kg FYM. In the initial stages, plants were allowed to grow as a single upright stem up to a height of 70 to 80 cm. The shoots emerging from ground level or below the graft/bud union and dried twigs were

Guava fruit tree plantation

removed periodically. Four varieties were planted in the field namely Allahabad Safeda, RCGH-1, RCGH-7 and RCGH-4. The survival percentage is about 85%. Intercultural practices are being done by the farmers.

Introduction of improved pig variety: Farmers were provided with improved breeds (75% Hampshire and 25% mixed local) of pigs for higher productivity and income.Seven units (one male and one female) improved cross breed piglets were provided to each beneficiary farmers in Mynsain village. Two units of local piglets were also included in farming system for comparison.

Popularization of improved varieties: Farmers in Mynsain village generally cultivate local low yielding varieties such as ginger, turmeric, french bean, rice, maize and mustard. Improved and high yielding varieties of crops, vegetables were provided to the farmers. Most of the crops were grown before by the farmers but groundnut, broccoli and tomato were introduced under scheme and basic package of practices were adopted them for higher productivity.

To promote small scale mechanization, implements and tools like paddy thresher, cono-weeder, sprayer, rosecan, maizecobsheller and one electric pump was provided to the village.

Particulars	Crop/livestock/other	Area (m ²)	Quantity
Vegetables	Frenchbean	4960	43kg
	Broccoli	600	40g
	Cabbage	610	50g
	Tomato		200g
	Lettuce		100g
	Bitter Gourd		80g
	Cucumber		200g
Rhizome	Turmeric		500 kg
	Potato		30kg
Fruits	Guava	3000	200 nos
Cereals	Rice	10000	100kg
	Maize	1268	100
Oilseed	Groundnut	1000	50kg
Feed and Fodder	Broom grass		200 nos
	Pig feed		300kg
	Poultry feed		550 kg
Water harvesting	Jalkund	320	16 nos
	Pond	1300	4 nos
Piglets	Improved		6 nos
-	Local		4 nos
Poultry	Layer chicks		200 nos
Vermicomposting	-		850kg
Rock phosphate	-		2 quintal
Neem cake	-		1 quintal
Lime	-		3 quintal
Terracing	Bench terrace	10812	-
Implements	Paddy thresher	-	1 no
	Cono-weeder	-	5 nos
	Knapsack sprayer	-	2 nos
	Rose can	-	10 nos
	Maize sheller	-	5 nos
	HP electrical pump	-	1 no

Table 7.5.9. List of crops, livestock and implements distributed

Organic Ginger-Colocasia production in Mynsain village

Integrated organic Farming System in Mynsain village

Success: Organic ginger cultivation was adopted by the farmers (Mrs Hynniew Rynghang) covering an area of 2858 m². Quantity of planting material was used resulted in production of 2400 kg. Mostly the farmers adopted sequential cropping of ginger-colocasia –chilli for higher productivity. Five farmers in Mynsain village have already started practicing organic farming in integrated farming system (IFS) mode. They integrated crops (rice, maize), vegetables (tomato, french bean, potato, lettuce, carrot) livestock (dairy/ piggery) and water harvesting (*Jalkund*).

ITKs practiced in Mynsain village

- 1. Maize seed mixed with turmeric (Shynrai) before sowing helps to protect the seeds from disease attack during seedling stage. This method is generally practiced by khasi people of Meghalaya. Selection of maize seed was done by soaking the seed in water in which the infected seed will float on the surface of water, the selected seeds were taken in a plate/ vessel where turmeric powder are added and mixed. Turmeric powder @ 200g/kg of maize seeds are required. The application of this method helps to protect the seeds from damages which may cause through pest and diseases attack and also protect the seed from dormancy and late germinations.
- 2. Twigs and leaves of Sla Latdoh and pine trees: Sla Latdoh and pine trees needle was placed in rice field to prevent the plants affected from pest and diseases. This method was mainly practiced by the khasi community and is also prevalent in RiBhoi district of Meghalaya. The whole plant (Sla Latdoh) was placed at water entrance and sometimes the leaves of pine trees is dipped into the sources of water, the field is kept flooded with this water, after few days the water is drained away and the process is repeated for 3-4 times in each season. Sometimes the twig and leaves tied together are also placed within the paddy field. This was used for all pests but the main pest targeted is gundhi bug.

- 3. Mixture of silkworm excret and ginger to control pest of paddy: Silkworm and ginger extracts are used. Silkworm and Ginger extracts were prepared @ 1:1 and was kept overnight for decomposition and then 1litre of water was added to it, the mixture is applied at the time of flowering of paddy to protect it from pest and diseases. Silkworms excrete and Ginger is mixed @1:1 to make a paste. The mixture is applied for control of soil borne pest and act as disease repellant.
- 4. Leaves of Cannabis sativato protect crops from pests:Cannabis leaves and soil is mixed in the ratio of 1:1 and is kept for 12- 24 hours for proper intermingling. Then the mixture is applied to paddy and ginger fields. The mixture protects paddy and ginger from all kind of pest and disease attack and acts as repellant of stored grain pests.

Training cum awareness programme on 'Organic farming system in cluster approach'

A three days training cum awareness programme on "Organic farming system in cluster approach" was organized for the farmers of Mynsain village at ICAR Research complex for NEH Region,Umiam, Meghalaya under NPOF scheme to improve their package and practices and skills on organic farming. After the completion of the training, participants were able to practice conversion of land from conventional

Farmers from Mynsain village attended the training

Training on Vermicomposting

Training on improved technology inputs

Field demonstration on raised and sunken bed for improving productivity

management to organic management, management of the entire surrounding system to ensure biodiversity and sustainability of the system, crop production with the use of alternative sources of nutrients such as crop rotation, residue management, organic manures and biological inputs and management of weeds and pests by better management practices, or biological control system. Thirty farmers benefitted from the training.

Farmers field day on "Conservation Agriculture and Organic Farming"

The Field Day was organized to create awareness among farmers and to disseminate information among the end users. The programme was participated by 65 farmers and 25 researchers and stakeholders. Organic farming and natural resource management were the major topics dealt in the field day. Farmers also had an exposure to the various components of organic farming. Field day also witnessed the practical demonstrations on zero tillage cultivation of pea, lentil and rapeseed (*toria*) in lowland rice fallow. Organic cultivation of vegetables such as tomato, french bean, carrot, potato was also discussed in the programme. Demonstration on various farm implements and tools such as furrow opener, zero till-seed drill, cono-weeder, paddy thresher were established. Extension leaflets in local language on organic farming and conservation agriculture were distributed to the farmers.

Tribal sub plan interventions at Coimbatore

Scientists visits at Bhopal

Summer squash at Bajaura

8. PUBLICATIONS/HUMAN RESOURCE DEVELOPMENT AND WORKSHOPS/MEETINGS

8.1 Publications

Research Papers

- Chitale, S., A. Pali Tiwari, S.K. Sarawgi, J.S. Urkurkar, Vinod Kumar and G.C. Sharma. 2012. Effect of organic nutrient management using on/off- farm organic inputs on the productivity basmati group of rice (*Oryza sativa*) - chickpea (*Cicer arietinum*)/wheat (*Triticum aestivum*) cropping system. Journal of Farming Systems Research and Development **18** (2): 12-19.
- Chitale, S., A. Tiwari, S. Bhoi, R.M. Savu, H.S. Tomar and J.S. Urkurkar. 2013. Performance of soybean (*Glycine max*) based cropping sequences under organic, inorganic and integrated nutrient supply systems in a *Vertisols. Indian Journal of Agronomy* **58**(2): 163-167.
- Devkant, Prasad, M.S. Yadava and C.S. Singh. 2013. Diversification of rice (Oryzasativa)- based cropping systems for higher productivity, profitability and resource use efficiency under irrigated ecosystem of Jharkhand. *Indian Journal of Agronomy* **58**(3): 264-270.
- Kumari, Niru, C.S. Singh, J. Prasad, M.K. Singh and Rajesh Kumar. 2013. Influence of organic nutrient sources on productivity of rice (*Oryza sativa*)-based cropping systems in Jharkhand. *Indian Journal* of Agronomy 58(3): 277-281.
- Rana, Monika, K.P. Raverkar, N. Pareek, R. Chandra and D.K. Singh. 2015. Impact of biodynamic preparations and *panchgavya* in organically managed cropping system comprising legumes on soil biological health. *Legume Research* **38**(2): 219-228.
- Singh, D.K. 2014. Integration of organic nutrient sources to sustain the system productivity and soil fertility in organic basmati rice based cropping systems. *Journal of Eco-friendly Agriculture* **9**(2):113-116.
- Singh, D.K., M. Rani, P. Tripathi, S.K. Yadav and A.K. Dubey. 2013. Weed management practices in organic basmati rice based cropping systems under *Tarai* conditions of Uttarakhand. *Green Farming* 4(6):711-715.
- Singh, D.K., Manisha Rani, A.K. Dubey and Priyanka Tripathi. 2014.Cutting edge research in Organic farming. *Journal of Eco-friendly Agriculture* **9**(1):1-5.
- Singh, D.K., Shilpi Gupta, A.K. Dubey and P.C. Pandey. 2014. Harnessing cosmic energy to enhance productivity of organic basmati rice-based cropping system. *Green Farming* **5**(5):725-729.
- Singh, D.K., Jyoti Pandey, Geeta Kaur and A.K. Dubey. 2013. Agronomic evaluation of biodynamic practices for organic cultivation of basmati rice based cropping system. *Journal of Eco-friendly Agriculture* **8**(1): 20-23.

Popular article/folders

- Bhoi, S., S. Chitale and A. Tiwari, 2012. thod /kku dh mRiknu rduhd] NRrhl X<+ [krh] an IGKVV publication 19(2): 10-13.
- 140 Annual Report 2013-14

Chitale, S., T. Harishankar Pandagre, S. Abraham and G.P. Pali. 2014. thod [krheath mold dksdh lkhedk] NRrhl x<+[krh] an IGKVV publication **21**(2): 12-16 April- June 2014.

Singh, A.B. and A.K.R. Tripathi. 2013. Vuli dh thod [krh] Folder, pp 1-5.

- Singh, A.B., S. Ramana, Brijlal Lakaria, K. Ramesh, J.K. Thakur, P. Ramesh and N.R. Panwar. 2013. Mje xgwdh tsod [krh] Folder, pp 1-5.
- Singh, A.B., S. Ramana, Brijlal Lakaria, K. Ramesh, J.K. Thakur, P. Ramesh, and N.R. Panwar. 2013. I ks chu dh t sod [krh] Folder, pp 1-5.
- Singh, A.B., S. Ramana, Brijlal Lakaria, K. Ramesh, J.K. Thakur, P. Ramesh and N.R. Panwar. 2013. bl cxky dh thod [kth] Folder, pp 1-5.
- Singh, A.B., S. Ramana, Brijlal Lakaria, K. Ramesh, J.K. Thakur, P. Ramesh and N.R. Panwar. 2013. vjgj dh tfod [krh] Folder, pp 1-5.
- Singh, A.B., S. Ramana, Brijlal Lakaria, K. Ramesh, J.K. Thakur, P. Ramesh and N.R. Panwar. 2013. Puk dh tíod [krh] Folder, pp 1-5.
- Singh, A.B., S. Ramana, Brijlal Lakaria, K. Ramesh, J.K. Thakur, P. Ramesh and N.R. Panwar. 2013.

Singh, A.B. 2014. Vf/kd mRi knu grapuk dh thod [krh] CEDMAP, Patrika, Feburuary, 2014 pp 49-52.

Singh, A.B. 2014. vf/kd mRiknu gral jl kadh tsod [krh] CEDMAP, Patrika, Feburuary, 2014 pp 48-52.

Book Chapter

- Ramesh, K. and A.B. Singh. 2014. Conservation agriculture vis-a vis organic farming. Conservation agriculture for carbon sequestration and sustaining soil health (J. Somasundrametal Eds book), pp. 425-435.
- Ramesh, K., Brijlal Lakaria, A.B. Singh and A. SubbaRao. 2013. The pracrice of organic farming –A SWAOT analysis. Souvenir soil health for sustainable productivity, Western region agrilcultre fair, *Indian Institute of Soil Science Bhopal*, pp. 144-147.
- Singh, A.B. and A. SubbaRao. 2013. thod [krh eamo]rk | adj.k] Souvenir soil health for sustainable productivity, Western region agrilcultre fair, *Indian Institute of Soil Science Bhopal*, pp. 70-83.
- Singh, A.B., K. Ramesh, B.L. Lakaria and A. Subba Rao. 2013. Organic farming produce for produce quality and soil health. In: Kundu S., M.C. Biswa, A.K. Chaudhary, R.S., Lakurai B.L. and SubbaRao, A. (Eds) IISS contribution in frontier ares of soil research, IISS Bhopal, pp. 221-226.
- SubbaRao, A., A.B. Singh, K. Ramesh and B.L. Lakaria. 2013. Nutrient management stratigies for organic package of practices. In: Kundu S., M.C. Biswa, A.K. Chaudhary, R.S., Lakurai B.L. and SubbaRao, A. (Eds) IISS contribution in frontier ares of soil research, IISS Bhopal, pp. 237-258.

Thakur, J.K., K. Ramesh, A.B. Singh and A. Subba Rao. 2013. Nutrient supplementing preparation and bio-pest control agent for their use in organic farming. Issue and perspective, Souvenir soil health for sustainable productivity, Western region agrilcultre fair, *Indian Institute of Soil Science* Bhopal, pp. 148-156.

Papers presented in Seminar/ Symposia/Conferences

- Singh, D.K., Shilpi Gupta and A.K. Dubey. 2013. Comparative response of organic, chemical and integrated mode of cultivation in basmati rice based cropping systems-A long-term study. In *International Conference on Organic Farming,* organized by ICCOA and Nurnberg Messe (Germany), Nov. 14-16 at Bangalore (Karnataka).
- Singh, D.K., Shilpi Gupta and A.K. Dubey. 2014.Harnessing Cosmic Energy through Biodynamic Approach.In*National Seminar*on Role of Organic Farming in Climate Resilient and Sustainable Agriculture, Jan. 9-10 at AAU, Gujrat.
- Singh, D.K., Z. Akhtar, A. Srivastava, M. Chakraborty and S. Gupta. 2015. Sustainable production organic basmati rice in North-Western Himalayas of India. In: *International Conference on Agriculture and Biological Sciences* (ABS2015), July 25-28, 2015 at Beijing, China
- Singh, D.K. Shilpi Gupta, A.K. Dubey, Dipti Bisarya and P.C. Pandey. 2014. Productivity potential comparisons and potential for mitigating of soil fertility of organic and conventional farming system under different basmati rice based cropping system. In *National Seminar on Organic Agriculture* held May 28-29, CSK HPKV, Palampur.
- Singh, A.B., A.K. Tripathi, Muneshwar Singh and A. Subba Rao. 2013. Quality evaluation of soybean under long term fertilizer experiment. *In proceedings of international conference* of role of plant bio-chemistry and bio-technilogy in food and nutritional security held during December 11-14, 2013, p 31.
- Subba Rao, A. and A.B. Singh. 2013. Improving nutritional quality of soybean in different nutrient management system under organic farming. *In proceedings of international conference* of role of plant bio-chemistry and bio-technilogy in food and nutritional security held during December 11-14, 2013, p 31.

8.2 Human Resource Development

Name of the institute/ organisation	Name of the trainees	Coordinators	Duration of the training	Nature of training imparted
Farmers welfare and agriculture development under ATMA, District: Hosangabad, (M.P.)	25 Farmers	Dr. A. Subba Rao Dr. A. B. Singh Dr. A. K. Tripathi	January 09-13, 2014	Organic farming and soil health
Farmers welfare and agriculture development under ATMA, District: Morena, (M.P.)	30 Farmers	Dr. A. Subba Rao Dr. A. B. Singh Dr. A. K. Tripathi	March 10-14, 2014	Organic farming and soil health
Farmers welfare and agriculture development under ATMA, District: Morena, (M.P.)	30 Farmers	Dr. A. Subba Rao Dr. A. B. Singh Dr. A. K. Tripathi	March 24-28, 2014	Organic farming and soil health

Sponsored training organised for farmers

Training organized under Tribal Sub Plan

12 number of trainings on various aspects of "Organic production of crops" was conducted in 5 states (Chhatisgarh, Jharkhand, Meghalaya, Maharashtra and Tamil Nadu) in which 355 tribal families benefitted. From the trained group of Tamil Nadu, Manar Vanadesa Farmers Group was formed for organic certification and registered at Joint Registrar Office, Coimbatore. A field day was also conducted in Meghalaya.

8.3 Workshops/Group Meetings

X Annual Group Meeting of Network Project on Organic Farming organized at MPUAT, Udaipur

The X Annual Group Meeting of Network Project on Organic Farming (NPOF) was organized at Maharana Pratap University of Agriculture and Technology (MPUAT), Udaipur during 19-21 August 2015. Shri Chandra Singh Kothari, Mayor of Udaipur Corporation inaugurated the group meeting as Chief Guest. Shri Kothari expressed concern about the ill effects of indiscriminate use of chemicals especially pesticides and called for growing safe food for all on the principles of organic farming combining the tradition, modern science and farmers innovation. Professor P.K. Dashora, Vice Chancellor, MPUAT who chaired the inaugural session lauded the efforts of agricultural scientists and farmers along with policy makers for making selfsufficient India in terms of food production in the post-independence period. Further, he said that today's need is to go near to our nature as consumers have started to look for safer and better controlled foods produced in environment friendly way. Dr J.P. Singh, Director, ICAR-IIFSR said that, considering the importance of organic farming in the country and to provide technological backstopping, the number of centres have been increased to 20 from 13. He also informed that all the 7 new centres have been made functional from 2015-16 and during the year, geo-referenced characterization of 453 organic growers have been done to understand the dynamics of organic farming. Dignitaries also released nine publications brought out by IIFSR and cooperating centres. Dr G.S. Ameta, Director of Research, MPUAT welcomed the participants while Dr S.K. Sharma, PI, MPUAT proposed the vote of thanks in the inaugural session.

Release of publications by dignitaries in the inaugural session

Professor P.K. Dashora, Vice Chancellor addressing in the inaugural session

In the first two days, review of on-going programmes and re-orientation/finalization of technical programme was taken up. Besides, special lecture on third party/GGC/PGS certification by Dr A.K. Yadav,

Ex-Director, NCOF & Member, RAC of IIFSR was also organized. On 21 August 2015, interface meeting of researchers-farmers-development departments-NGOs-certification agencies was organized to take stock of research requirements of all the stake holders. All the stakeholders expressed that scientific package of practices for organic production, identification of suitable varieties for organic farming and reducing the external organic inputs as requirement for successful organic farming. Dr J.P. Singh, Director, ICAR-IIFSR informed that location specific organic package of Interface meeting of researchers-farmers-development departments-NGOs-certification agencies practices for 42 cropping systems have been prepared from the scheme which will be finalized and published in multiple-languages shortly. Experiments for identification of varieties and reducing the external organic input costs through integrated organic farming system models are being undertaken through the scheme.

Field visit to NPOF experiments at MPUAT, Udaipur

Interface meeting of researchers-farmers-development departments-NGOs-certification agencies

Based on the overall performance, Pantnagar (GBPUAT) centre of NPOF was selected as best centre and a certificate were issued in the plenary session. The group meeting ended with vote of thanks proposed by Dr N. Ravisankar, National PI, ICAR-IIFSR. The consolidated recommendations of the group meeting is given below

A. Research

- Geo-referenced characterization of organic farmers is mandatory activity for all the centres. Data from minimum of 30 organic farmers per year per centre should be collected in the prescribed proforma and synthesized. The activity should be reflected in the Annual Report.
- Allelopathic kind of weed management needs to be considered in organic farming. Collaborative study on organic weed management with AICRP on weed management should consider this aspect.
- Quality of milk obtained under organic management of dairy should also be observed in the Integrated Organic Farming System (IOFS) models experiment.
- Long term analysis of yield, economics, soil physical, chemical and microbial properties in the experiment on evaluation of organic, inorganic and integrated production systems should be done and presented briefly (only 2 slides) in all future group meetings before presenting the current year results.
- Economics should be calculated with premium and without premium for organic management. This
 should be compared with other management practices such as integrated and inorganic which are to
 be calculated without any premium price.Net return per rupee invested (NRPRI) should be used as
 measuring parameter instead of B:C ratio.

- Yield transition period (number of years taken to obtain statistically on par yield with chemical management) for all the cropping systems under organic management should be worked out using system equivalent yield.
- New centres should initiate all the approved experiments as per the technical programme discussed and finalized. Long term experiment of evaluation of organic, inorganic and integrated production systems should be laid out as per the plan provided which includes alley strips with perennials and buffer channels.

B. Others

- Detailed Package of Practices (PoP) for organic production of crops in cropping systems perspective should be published in English and Hindi. English version should be published by December 2015 and hindi version by March 2016. It should also be translated in to regional languages especially Tamil, Gujarati, Malayalam and Kannada. Regional translation and publication should be done by centres. For regional publication, relevant crops and packages from other locations can also added.
- All the centres should document techniques used for management of weed, pest and disease under organic management in the experiment on evaluation of organic, inorganic and integrated production systems.
- All the centres should improve the publications from the scheme especially research papers and popular articles.

9. APPENDIX

Details of crops and varieties used in Evaluation of organic, inorganic and integrated production systems for crops and cropping systems at various locations

Сгор	Variety	Сгор	Variety
Bajaura		Sorghum	M 35-1
Tomato (Kharif)	7730	Groundnut	GPBD 4
Black gram (<i>Kharif</i>)	Palampur-93	Hy. cotton	DHB 263
Lady's Finger (<i>Kharif</i>)	P-8	Maize	ARJUN
Cauliflower (<i>Rabi</i>)	PSBK-1	Chickpea	JG 11
Pea (<i>Rabi</i>)	Azad P-1	Karjat	
French bean (Summer)	Falguni		
Tomato (Summer)	RK-123	Rice	Karjat – 4
Summer Squash (Summer)	Australian Green	Groundnut	SB – XI
Summer Squash (Summer)	Australian Green	Maize (Sweet corn)	Sugar – 75
Bhopal		Mustard	Varuna
Soybean	JS-335	Dolichos bean (Green pod	Konkan Bhushan
Durum wheat	HI-(Malwa Shakti) 8498	vegetable)	
Mustard	Pusa Bold	Сгор	Variety
Chickpea	JG-130		
Linseed	JL-9	Jabalpur	
		Basmati rice	Pusa Basmati -1
Calicut		Wheat	MPO-1106
Ginger	Varada, Rejatha and	Chickpea	JG-322
·	Mahima	Berseem	J B - 1
Turmeric	Alleppey Supreme,	Vegetable pea	Arkel
	Prathibha	Maize fodder	African tall
Black Pepper	Sreekara, Panniyur -1	Sorghum fodder	MP Chari
Coimbatore		Ludhiana	
G M (Sunnhemp)	CO 1	Basmati rice	Panjab basmati 3
Cotton	Suraj	Pigeonpea	PAU 881
Maize	COH(M)6	Moong	PAU 911
Chillies	PKM1	Wheat	HD 2967
Sunflower	COSFV 5	Chickpea	GPF 2
Beetroot	Ruby Queen	Medinungun	
Maize	COH(M)6	Modipuram	
Ladyfinger	Anarva	Basmati rice	PB-6
Dharwad		Rice	Saket-4
Dilai Wau		Maize Grain	Bajaura pop corn
Cowpea	C 152	Green cob	Madhuri
Safflower	A1	Wheat	HI - 8498
Pigeonpea	TS-3R	Okra	Arka Anamika
Greengram	DGGV 2	Potato	Chipsona-3

Network Project on Organic Farming

Сгор	Variety	Сгор	Variety
Barley	DWRB-91	Raipur	
Green gram	Pusa vishal	Soybean	JS – 335
Mustard	Pusa bold	Maize	Sugar-75
Pantnagar		Vegetable pea	Pant sabjimatar" (PSM 3)
Basmati rice	Pusa Basmati -1	Chilli	Agnirekha
Wheat	UP-2572	Onion	Nasik red
Chickpea	Pant Kabuli chana-1	Ranchi	
Vegetable Pea	Arkel	Diag	Direction
Potato	Kufri bahar 3797	Rice Wheat	Birsamati K- 9107
Coriander	Harit RS-5	Lentil	PL 406
Sesbania	Pant Ses-1	Potato	Kufr iAshoka
Rice	Pusa-1121	Linseed	Shekhar
Soybean	PS 1347	Umiam	
Maize	PSM-3		
Pigeon pea	UPAS 120	Rice (sunken bed) kharif	Megha Aromatic 2
Moong	PM-5		Lampnah Ngoba
Cowpea	PL-2	Rice (raised bod)	Sahsarang-1 Bhalum-1
Mustard	PR-15	Rice (raised bed) Carrot	New Koroda
Okra	Arka Anamika	Potato	Kufri jyoti
		French bean	Naga local
		Tomato	Rocky

10. ANNEXURE

ICAR-Network Project on Organic Farming Contact Address of NPOF Centres (as on 31 March 2015)

ICAR-IIFSR, Modipuram

Dr J.P. Singh, Director (Acting), ICAR-Indian Institute of Farming Systems Research, Modipuram, Meerut-250 110, U.P. Tel: (Off.)0121- 295 6318; (Fax) 0121-288 8546, E mail:directoriifsr@yahoo.com

Dr N. Ravisankar, Principal Scientist & National PI, NPOF, ICAR-Indian Institute of Farming Systems Research, Modipuram, Meerut-250 110, U.P. Tel: (Off.) 0121-288 8571; (Mob.) 08755195404, (Fax) 0121-288 8546, Email: ifsofr@gmail.com

Principal Investigators at Centres

- 1. Dr D.K. Parmer, Principal Scientist (Vegetables) cum Associate Director, Principal Investigator (NPOF), CSKHPKV, HAREC, **Bajaura** (Kullu) HP-175125, Phone: 09418641963 E mail : dkpharec@yahoo.co.in
- Dr A.B. Singh, Principal Scientist & PI, NPOF, ICAR-Indian Institute of Soil Sciences, Nabi, Bagh, Berasia Road, Bhopal-462 038 (M.P.) Tel: (Off.) 0755-2730970 / 2733341 / 2733372 / 2734221; (Mob.) 09425013470; E mail: abs@iiss.res.in
- Dr C.K. Thankamani, Principal Scientist & PI NPOF, ICAR-Indian Institute of Spices Research, P.B.No.1701, Marikunnu PO, Calicut-673 012 (Kerala), Tel.: (Off.) 0495 - 2731410, (Mob.) 09495083552, (Fax) 0495-2730294, Email:thankamani@spices.res.in
- 4. Dr E. Somasundaram, Professor and Head, PI, NPOF, Department of Sustainable Organic Agriculture, TNAU, Coimbatore-641 003 (T.N.), (Mob.) 09443578172, (Fax) 0422-6611246, Email: organic@tnau.ac.in, eagansomu@rediffmail.com
- Dr H. Malligawad, Senior Scientist & PI-NPOF, Institute of Organic Farming, U.A.S., Yettinagudda Campus, Krishinagar, Dharwad-580 005, Karnataka, Tel.: (Off.) 0836-2448566/2448321*305; (Mob.) 09449809436; (Fax) 0836-2748377/2448349
- Dr V.K. Shukla, Chief Agronomist, AICRP-IFS, Department of Agronomy, JNKVV, Adhartal, Jabalpur-482 004 (M.P.) Tel.: (Off.) 0761- 2681773, 2680771. 0761-2647670 (Mob.)09424306503, (Fax) 0761-2481236, Email: drvkshuklaifs@gmail.com
- Dr L.S. Chavan, Chief Agronomist, AICRP-IFS & Principal Investigator, NPOF, Agricultural Research Station Karjat-410 201 Dist. Raigad (Maharashtra), Tel.: (Off.) 02148-222072, (Mob.) 09850971545, (Fax) 02148-222035, Email:Ischavan@gmail.com,
- Dr C.S. Aulakh, Senior Agronomist, PI, NPOF, Department of Agronomy, PAU, Ludhiana-141 004 (Punjab), Tel.: (Off.) 0161-2401960, Ext.-308, (Mob.) 9888350044, (Fax) 0161-2400945, Email:csaulakh@rediffmail.com
- Dr MPS Arya, Principal Scientist & PF (OAS), PI, NPOF, ICAR-Indian Institute of Farming System Research, Modipuram, Meerut-250110, U.P., Tel: (Off.) 0121-288 8571; (Mob.) 09536849605; (Fax) 0121-288 8546, Email: aryamps1999@gmail.com

- Dr D.K. Singh, Principal Investigator, NPOF, Department of Agronomy, College of Agriculture, GBPUA&T, Pantnagar-263145, District-Udham Singh Nagar 263 145 (Uttarakhand), Tel: (Off.)05944-233625; (Mob.) 09411320066; (Fax) 05944-233608/233473, Email:dhananjayrahul@rediffmail.com
- Dr M.S. Bhambri, Chief Agronomist (AICRP-IFS), Indira Gandhi KrishiVishwavidyalaya, Krishak Nagar, Raipur-492 006 (Chhattisgarh) Tel: (Off.) 0771-2442177, (Mob.) 09826142700 and 09827392117, (Fax) 0771-2442131, Email:ifs_igkvraipur@rediffmail.com, mcbhambri@yahoo.co.in
- Dr C.S. Singh, Jr. Scientist cum Asstt. Prof. Department of Agronomy, Birsa Agricultural University, Kanke, Ranchi-834 006 (Jharkhand), Tel.: (Off.) 0651-2450608; (Mob.) 09431314755; (Fax) 0651-2451106, Email:cssingh15@gmail.com
- Dr Anup Das, Senior Scientist (Agronomy) ICAR Research Complex for NEH Region Umroi Road, Umiam-793 103, (Meghalaya), Tel: (Off.) 0364-2570306; (Mob.) 09436336070; (Fax) 0364-2570306, Email:anup_icar@ahoo.com

ACRONYMS

ALE	: Aquous leaf extract	Mn : Manganese	
ASE	: Aquous seed extract	MOP : Muriate of potash	
BBF	: Broad bed and furrow	N : Nitrogen	
B:C	: Benefit:Cost	NC : Neem coated	
BD	: Biodynamic	NEOC : Non edible oil cakes	
СС	: Cost of cultivation	NPV : Nuclear Polyhedrosis virus	
CDM	: Cowdung manure	NR : Net returns	
Cu	: Copper	NRPRI: Net return per rupee invested	
DSR	: Direct seeded rice	OC : Organic carbon	
DTPA	: Diethylene triamine penta acetic acid	P : Phosphorus	
EC	: Enriched compost	PG : Panchagavya	
ECe	: Electrical conductivity	pH : Negative logarithum of hydrogen i	on
Fe	: Iron	concentration	
FB	: Flat bed	PPM : Parts per million	
FYM	: Farm yard manure	RBD : Randomized block design	
GLM	: Green leaf manure	RP : Rock phosphate	
		RSB : Raised and sunken bed	
GM	: Green manure	SRI : System of rice intensification	
GR	: Gross returns	SSP : Single super phosphate	
IOFS	: Integrated organic farming system	TSP : Tribal sub plan	
ITK	: Indigenous technical knowledge		
К	: Potassium	VC : Vermicompost	
KC	: Karanj cake	Zn : Zinc	

CONTACT / सम्पर्क सूत्र

Dr. A.S. Panwar

Director

ICAR-Indian Institute of Farming Systems Research Modipuram, Meerut-250 110, Uttar Pradesh, India Tel: (Off.) 0121-288 8711, 288 8811 (Mob.) 09412078001 (Fax) 0121-288 8546 E-mail: director.iifsr@icar.gov.in directoriifsr@yahoo.com

डा. ए.एस. पंवार निदेशक

भा.कृ.अनु.प.–भारतीय कृषि प्रणाली अनुसंधान संस्थान मोदीपुरम, मेरठ–250 110 (उ.प्र.), भारत फोनः (कार्या0): 0121–288 8711, 288 8811 (मोबा0): 09412078001 (फैक्स): 0121–288 8546 ई–मेल: director.iifsr@icar.gov.in directoriifsr@yahoo.com

Website:

www.iifsr.res.in

Monitoring of NPOF experiment at Bhopal by Dr. A.K. Sikka, DDG (NRM) ICAR, New Delhi

Organic food production system under NPOF-Tribal Sub Plan in Mynsain village of Ri-Bhoi district (Meghalaya)

हर कदम, हर डगर किसानों का हमसफर श्वास्त्रीय कृषि अनुसंवान परिषद

Agrésearch with a Buman touch